WORLDLINE aW7.

WORLDLINE

pHey Integration Guide

v.1.3.4

1.0.0

First issue

1.0.1 Document outline revision

1.0.2 IT content revision

1.0.3 Business content revision

1.0.6 IT content revision

1.0.7 Document outline revision

1.0.8 Insertion of references to sections

1.0.9 Graphic revision

1.0.10 IT content revision (strings limited to 2048 bits, supported languages,removed
the TID in initPayment)

1.0.11 IT content revision (body and response to server-to-server calls updated)

1.1.0 Added Android SDK and iOS SDK guides
Added "Smart layout customization” section
Error code revision
Formatting revision

1.1.1 Typos in examples

1.1.2 Specified which licenses to use in the various Requests and redacted
notification email

1.1.3 Detailed description on merchant-side PCI DSS
Fixed typos on host

1.1.4 Typo in Android SDK in the "Implementation in an Activity" section, letter "f".
initPayment, removed obligation of the redirect_successUrl, redirect_failureUrl and
callback_url parameters

1.15 Smart integration, transaction outcome management

1.1.6 redirect_successUrl and redirect failureUrl were changed from POST-typecalls to
REDIRECT.
Easy integration, transaction outcome management

1.1.7 Fixed test PANs

1.1.8 Specified that the Access Token must be sent in Bearer mode
Verifying a Transaction (verify) section inserted

1.1.9 Types corrected in “Smart integration” example

1.2.0 Document outline revision

Tokenize function added to various Sections.

Complete revision of In-App integrations (i0OS and Android)

Specification on Access Tokens

InitPayment, description of amount when card is verified InitPayment,
enumerative added to address type “Making payments with 3DS” section.
Example modified

Easy integration: compatible browsers, clarifications on Verify

Smart integration: compatible browsers, window.postMessage(),
clarifications on Verify

“Information for test environment” section, enrStatus e authStatus
“Information for test environment” section, test cases New “Information for release
to Production” section

1.2.1 Verify, PaymentID in input section

1.2.2 References to APMs removed
Notes added for the special case of the Credit of Confirm
Added Par. “Making one-click payments”

1.3.0 Par. “Support information”, new email transaction_type
clarification in initPayment shoplD clarification in initPayment
logo parameter substituted with image parameter in initPayment
Par. “Smart Layout Management”, new layout “buttonless”
SDK i0OS, added Xcode functional requirements
SDK Android, removed amount from ApiService.paymentConfiguration()
Par. "Making one-click payments”, complete review
Par. “Deleting a tokenized card”, added paragraph
Par. “Information for test environment”, added two test cases Par.
“Testing 3DS 2.x”, added paragraph

1.3.1 Par. “Recurring payments”, added paragraph

1.3.2 Par. “Recurring payments”, modified paragraph

1.3.3 Par. “Payment Initialization (initPayment)”, removed paylnstrToken and
payCardToken in the examples
Par. “Credit”, removed paylnstrToken and payCardToken in the examples
Par. “Void”, removed paylnstrToken and payCardToken in the examples
Par. “Confirm”, removed paylnstrToken and payCardToken in the examples
Par. “Payment Initialization (initPayment)”, added type values SPEDIZIONE and
FATTURAZIONE
Par. “Payment execution (execute)”, card_brand is not mandatory
Par. “Direct payment (directPayment)”, card_brand is not conditional
Par. “Payment Initialization (initPayment)”, job to cancel payments. Par.
“Making one-click payments”, case of payCardToken null
Par. “In-App checkout (SDK i0S)”, itemld value must be the PaymentID on the
initPayment

1.3.4 Par. “Payment outcomes”, added paragraph

Par. “Easy checkout”, payment result moved to new

Par. “Payment outcomes”

Par. “Smart checkout”, payment result moved to new

Par. “Payment outcomes”

More paragraphs, callback_url must be in HTTPS

More paragraphs, redirect_successUrl must be in HTTPS More paragraphs,
redirect_failureUrl must be in HTTPS

Par. “In-App checkout (SDK i0S)”, modified functional requirements Par. “In-App
checkout (SDK i0S)”, modified SDK configuration

Par. “In-App checkout (SDK Android)”, modified SDK configuration

Par. “In-App checkout (SDK Android)”, modified example in

WORLDLINE aW7

PaymentSelectorActivity Integration
Par. “Confirm with automatic void of the residual”, added paragraph

N [o o Yo [Tt oY o RPN 8

1.1 CheckoUt SOIULIONS .. .couiiiieieie ettt et e be ettt e e b e be e sbeesaeesbeesbee s 8
1.2 PayMENt iINSTIUMENES ..ottt e e s b e e s rabaeeesasbeeeennraees 8
1.3 AddItiONal SEIVICES ..couviiiriieiieieeieeiteteste ettt sttt s b e et b e s st e e e sbe bt sentenees 8
131 SaVING PAYMENT AtA.....uiiiiciiee et e e e e st e e e eta e e e erreeeeans 9
1.3.2 Payment NOTIfICAtIONSviiieiiee ettt e et e et e e e arae e e anes 9
1.3.3 Customer NOLIfICAtIONScoiiieiiee e 9
134 Easy Checkout personalizationccceecueeiiiieiciie et 10
135 Easy Checkout optional fOrmsS.......cc.eeiiiiii i 10

I W] o e Jo) a d T} (oY g ¥ 4 o] o VUSSP 11

2 INItIAlIZING @ PAYMENT ..ottt e e et e e e et e e e et e e e e e bae e e eabtee e e nbaeeeeareaeenres 12
2.1 Payment Initialization (iNitPAYMENT) ...cccueeecieieii et 12
2.1.1 Example of Java Unirest integrationccecveieiiiiii e 17
2.1.2 Example of PHP http Request inte@grationccccueeeieeeiieeeieeeciee et 18
2.1.3 Example of Node Request integrationcceeeeciieeeeciie e e 20

3 TYPES OFf INTEEIATION «.eveeieeeee ettt e e e et e e e et e e e e e bae e e ebte e e eeabaeaeeateaeennees 22
O Y o o] (T=Tol o T | SO PURUPRUPRPRPRIN 23
4.1 Payment eXECULION (EXECULE) ..vviiiiiieieiieeeecieee ettt e e e e tre e e are e e e abre e e s aree e eeabeeeeeanes 23
4.1.1 Example of Java Unirest integrationcccccueeeiiiiiiccciee e e 27
4.1.2 Example of PHP Http Request integrationccceeeeieeieciie e e 27
4,13 Example of Node Request integrationcceecveeeciererieeeee et eee e 28

4.2 Payment execution With 3DSeiiiiiie e e e e 29
4.3 Direct Payment (direCtPaymMeENnt)ccoccuieeiiiiiiie ettt e rae e e 32

I - VAol o =Yl o1 USRS 39
6 SMArt ChECKOUL ..ttt ettt et b e et e e e e e e 41
6.1 SMart layout MaNAZEMENT ...cc.eeecieeeiieceeectee et e et e s e e e be e e tae e sab e e sareesnteeesaeessseessseesnreas 43
6.2 Smart layout Personalizationccc.eeccieeeiieiciec ettt et 45

7 IN-APP CheCKOUL (SDK IOS) ..iiiiiiiei ittt ettt et e e e tte e s e eate e e e e bae e e eate e e eentaeeeeanaeeeennens 47
7.1 FUNCLIONAl REQUITEIMENTS ..ottt ettt e et e e ettt e e e et e e e e ate e e e eareeeeeabaeeeennnes 47
/A (414 e Yo [§ ot i To o KOO OO 47
/2 T Vo [1 7= 30 D1 G o I o o [T o o] =T o1 ARSI 47

A B] @oT o} = (VL= 4 o] o IR 49

7.5 SDKIMPIEMENTATION ...uviiieeiiiie ettt eett e e et e e e e ab e e e eab e e e e aaaeeeenssaeaeannreeas 51
7.5.1 Payment Context INTEEIratioN. ...ttt e e e s sserre e e e e s s 51
7.5.2 WidgET INTEEIAtION ..eeueiieciee ettt ettt e et e be e e baeeeaae e sareeeareas 52
7.5.3 Integration by direct call on a specific payment methodccccccvveiieeieececiee e, 56
7.5.4 Setting the Credit Card view in direct paymentscccocoveeeeiiieeeecieee e 56

8 In-App checkout (SDK ANAroid)eccveeeiiiiiieciieeceeeste et ste e e et e e srae e seseeste e s teesbeeesneeenneeenns 57

8.1 MiNiMUM REQUIFEMENTSviiiiieeiie ettt et eetee e tee et eestae e s te e sbeesteeetaeesaeesaseesaseesareas 57

8.2 Adding dependenCy fOr SDK.......coiiiiiiieeiiecieecieeeetee et cteesre e teeste e eetee e tee e areesabeesabeeeareas 57

TS T BT Qo]] 7= (U= 4 o] o F SRR 59

8.4 Graphic Personalizationooociii it e rae e e e nees 59

T Y L 1o =Y = = i o o AP 60

8.6 PaymentSelectorActivity INTEEratioNcccuveiiiieiiieecie ettt e 60

8.7 FragmentPayment INTeEratioN...... ... e e eeeses e 62
8.7.1 Implementation inN @n ACHIVITY.......cceee i e 62
8.7.2 Implementation in @ Fragmentcoooiii ettt e 65

8.8 D] Yo dor= 1| T A=Y d T o o VPP 65

8.9 EXaMPIES OF the COURuviiiiiiiiieee ettt et et e et e e s abe e sabeeeareas 66

8.10 EXAMPIES Of LAYOULS....cccuiiiieeiiiee ettt ettt e e tre e et e e e bae e s e ate e e e enbae e e enteeeeenreeeeennees 68

O PaYMENT OULCOMESeeiieiciiiee ettt e ettt e e ettt e e ettt e e e et e e e sebteeeeeabaeaesbbeaesaataseeensaseesassaeaessseeesassananns 69
10 ATLEr the PAYMENT ...ciiiiiie e e e e st e e et e e e sbee e e e sbee e e sneaeeenees 71

L0.1 Creditec ettt ettt h e et b e e at et b e bt et e b e sbeeaeebe b 71
10.1.1 EXample of JAVa UNIMEStoicieeeieeciee ettt ettt ettt e b e e aae e 74
10.1.2 Example of PHP HEtp REQUEST....cccuuiiiiiiieeeceee ettt ettt e e e e e e e 74
10.1.3 Example of NOdE REQUESTcoeieiiiieciee ettt ettt ettt are e e et e e e e aes 75

00 AV 7o o PRSPPI 76

F0.3 oMMttt ettt ettt b et b e s bt e at et e bt s et et et e e ae et e st e sbe et e be b 79
10.3.1 Confirm with automatic void of the residualc.ccoceriiriiriiniee, 81

10.4 Verifying @ Transaction (VEIITY) ...ecocueii ittt ettt et e e e bae e e e araeeeans 83

10.5 Making one-Click PAYMENTSccccviiiiieeeiiecieeeieeereeeste e staeestre e s e e steeesaae e raeessseesnteeeaseeensaeans 85
10.5.1 Phase 1 - CoNfiGUIratioNccccuieiiiieciiie ettt e et e e e e be e ebeeenae e 85
10.5.2 Phase 2 - Card toKENIZAtionccceveeieriineeieie sttt sttt 86
10.5.3 Phase 3 - Payment USING tOKENccoiuiiieiiiiie ettt e 88

10.6 Recurring payments (scheduled by the merchant).........ccccccveeeeeiciiecie e, 90

10.6.1 Phase 1 - CoNfIgUIAtioNcccueiieeiiiiecciie ettt e e e aree e e e e e enes 90

WORLDLINE sW7.

10.6.2 Phase 2 - Card tOKENIZationccceiieiienienieiie ettt st 90
10.6.3 Phase 3 - Payment USING TOKENcccuvieiiiiecieeceecee ettt e e vae e e 90
10.7 Deleting a tokenized Cardcccuiieiiiiiie ettt et eve e e ste e e re e e sate e s be e sbeeereeens 92
11 EITOE COUBS ...ttt ettt st ae e st s bt s ae e she e saeesat e sat e eme e eaeesane st e sanesaees 93
12 Testing environment iNfOrmMationc..oec it tr e e e aree e 94
L12.1 TESTING 3DS 2.X ctiieeeeiiee et e ettt e e ettt e e e ettt e e e e eteeeeeetbeeeseataeeesabsaeeeastaeaeebaseesasseeaeeassaeeeanraeaans 96
13 Information for release t0 ProdUCtioncccceveerienienicnieeeee s 97

14 Merchant-side PCl data security information.........cccccuviiiiiiiii i 98

This document presents useful information for the integration of a website with the Worldline e-
commerce platform.

Websites offering e-commerce services usually provide a shopping cart with the summary of the
products purchased and a button to complete the purchase through a payment request that can end
on your website or through a redirection to a third-party site.

Worldline has several checkout solutions which are useful for optimizing conversions and increasing
online sales. They can be easily integrated into your website as following:

Easy Checkout — With the Easy solution your customers can finish their purchase on a
personalized and optimized payment page for each device, which can be integrated with your
website very quickly, without having to worry about the security of the payment that is
guaranteed by Worldline

Smart Checkout — Your customers can pay directly on your site and the transaction data will
be handled by Worldline in secure mode thanks to Worldline's default Ul components that
can be easily integrated into your website with limited data security charges borne by us
(details in the Merchant- side PCI data security information section).

In-App Checkout — With the Smart solution, you can integrate our iOS and Android SDKs to
have your customer complete their purchase directly in the App with the best mobile User
Experience

API Checkout — Worldline APIs can be used to integrate the payment request within your
website (card data is managed by the merchant server)

Worldline has several payment instruments that can be accepted with a single integration, including
the VISA, VISA Electron, VPay, Mastercard, Maestro, American Express and Diners schemes.

EERI AN & ~ Anche in modalita
% ‘ . Pay] { = Pay ‘ ContactLess ,)))

VISA
PAY

mastercard maestro

This integration guide has all the necessary information to integrate your website with the Worldline
e-commerce platform.

WORLDLINE aW7.

1.3.1 Saving payment data
On request, by activating the “one-click” payments function, you can enable the service that lets you
save payment data to facilitate future payments. For details on the calls to be made, see the “Making
one-click payments” section.

1.3.2 Payment notifications
On request, you can enable a notification for each completed payment to receive via email, SMS.

Postain siTho Notifica - Transazione confermata

Importans e

Posta nvata 4 Curonics

Bozze

Note

D Notifica - Transazione confermata

Gentile Esercente,
in data 09-01-2019 02:08:01 BNL POSitivity

ha elaborato per suo contg una transazione di
vendita per un imports di

523,45 €

La transazione ¢ stata APPROVATA @

Informazioni sull'esercente fornite al titolare:

Insegna: Plugin Prestashop test

Codice esercente: (oo = g o=
Codice terminale; T = memeemmams

Informazioni sul cliente e sulla fattura:

Indirizzo emall: mario rossi@email It

Codice fattura: [Apogeo] Ordine da nuovo cliente (SEE5%)
2019-01-09709:07.40+01:00

Informazioni sulla transazione;
Modalita di pagamento: Carta di credito
Circuito; Visa

Numero carta: 455777 *=***3335
Data e ora: 09-01-2018 09:68:01
Codice ordine: 2ot =
Tipo di transazione: Addediio
Importo: 523,45 Eur
Codice autorizzazione: 255

Esito: IGFS_000 - Transazione 0K

You can ask our support team to modify the communications sent (see Section 1.4).

1.3.3 Customer notifications
On request, you can enable a customer notification for each completed payment to be sent via email
or SMS.

WORLDLINE &7,

Poats i aerive Conferma pagamento

P Axerts

Foats wveae Maria

Bozze

iote

pec— E nferma pagamento
AX
523,45 €

Gentile Mario,
hai acquistato il seguente prodotto

Fototamere reflex
NIKON - D3400 + AF-P DX 18-55MM
Colore: nero

Informazioni sull’acquisto:

Nome prodotto; NIKON - D3400 + AF-P DX 18 55MM
Data: 17 / 08 /. 2019

Metodo di pagamento: Visa - *rm® s s 1234
Esercente: Axepla store

Prezzo: 523,45 €

Per ulteriori informazion: controlla il tuo acquisto.

Cordiali salutl,
il team Axepta

You can ask our support team to change communications that have been sent (see section1.4).

1.3.4 Easy Checkout personalization
Your payment page can be personalized with your logo and colors

£ 100,00€

1.3.5 Easy Checkout optional forms
Using the Easy Checkout solution, you can activate, on request, the following forms on the payment
page:

e (Cart - The cart summary can be displayed on the payment page, including the logo,quantity,
description and unit price of each product purchased

WORLDLINE a7

e Addresses - The summary of shipping and billing addresses can be displayed, showing the
recipient, address, postcode, city, province and state for each.

1.4Support information
This integration guide has all the necessary information to integrate your website within the
Worldline e-commerce platform.
For any further information, simply write to the email address:

ecommercesupport@axeptamail.com or contact us at (+39) 060 070 selecting option 1 and
then 4.

mailto:ecommercesupport@axeptamail.com

To make a payment using the Worldline Payment Gateway (pHey), a Merchant must be configured
on Worldline side.

You must then be in possession of a valid key (AccessToken) for your user name and a user license.
This Access Token can be obtained using your credentials at the following address https://pay-
test.axepta.it/access. It is recommended that you keep the access token in a safe place and set this
access token as a setup parameter on your e-commerce system, so that it can be replaced easily if
the need arises. The access token lasts for 10 years but can be revoked at the specific request of the
merchant or for Worldline needs.

Finally, you must possess an API License Key, which is indispensable for initializing the payment using
server to server APIs. The license is of the alphanumeric type (for example: "ce7e4f96-3fal-4696-
a669-80cfe2805411").

The payment initialization call is required for every transaction that you want to carry out regardless
of the integration method the merchant wishes to use. This is a technicalpayment initialization call
that DOES NOT trigger any type of authorization flow.

The specifications of the initialization call are below:

METHOD POST

ENDPOINT {{host server to server}}/api/vl/payment/initPayment

“Content-type”: application/json
HEADERS “Authorization”: Bearer <-- AccessToken -->
“X-license-key": <-- API License Key -->

|3

(BODY) PARAMETERS | "addresses": [{

"type": "SHIPPING",
"addresseeName": "Mario Rossi",
"streetAddress_1": "Via del Corso 1",
"streetAddress_2": "C/O Worldline.",
"zip": "00100",

"city": "Rome",

"provinceState": "RM",

“country": "Italy"

https://pay-test.axepta.it/access
https://pay-test.axepta.it/access

JRLDLINE

W/

}

"type": "BILLING",
"addresseeName": "Michele Bianchi",
"streetAddress_1": "Via del Corso 1",
"zip": "00100",
"city": "Rome",
"provinceState": "RM",
“country": "Italy"
H,
"addressesURI": "https://www.merchantSite.com/addressEdit",
"products": [{
"logo": "https://logoRef.com/logo",
"quantity": 1,
"description": "Product1”,
"price": "49.75"

"logo": " https://logoRef.com/logo ",

"quantity": 1,

"description": "Product2",

"price": "34.83"
H,
"redirect_successUrl": "https://www.merchantSite.it/success_redirect",
"redirect_failureUrl": "https://www.merchantSite.it/failure_redirect",
"callback_url": "https://www.merchantSite.it/callback",
"additionals": [{

"key": "Test",
"value": "Value"
|8
{
"key": "Test2",
"value": "Value2"
1

https://www.merchantsite.com/
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
http://www.merchantsite.it/success_redirect
http://www.merchantsite.it/failure_redirect
http://www.merchantsite.it/callback

|3
"addresses": [{

"type": "SHIPPING",
"addresseeName": "Mario Rossi",
"streetAddress_1": "Via del Corso 1",
"streetAddress_2": "C/O Worldline.",
"zip": "00100",

"city": "Rome",

"provinceState": "RM",
“country": "Italy"

"type": "BILLING",

"addresseeName": "Michele Bianchi",
"streetAddress_1": "Via del Corso 1",
"zip": "00100",

"city": "Rome",

"provinceState": "RM",
"country": "ltaly"

}]I

"addressesURI": "https://www.merchantSite.com/addressEdit",
"products": [{

"logo": "https://logoRef.com/logo",
"quantity": 1,

"description": "Product1”,

"price": "49.75"

"logo": " https://logoRef.com/logo ",
"quantity": 1,

"description": "Product2",
"price": "34.83"
H,

"redirect_successUrl": "https://www.merchantSite.it/success_redirect",

"redirect_failureUrl": "https://www.merchantSite.it/failure_redirect",

"callback_url": "https://www.merchantSite.it/callback",
"additionals": [{

Ilkeyll: “Test"'
"value": "Value"

"key": "Test2",
"value": "Value2"

https://www.merchantsite.com/
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
http://www.merchantsite.it/success_redirect
http://www.merchantsite.it/failure_redirect
http://www.merchantsite.it/callback

WORLDLINE aW7

{
RESPONSE "code": 200,
"message": "SUCCESSFULLY",
"paymentID": <-- payment ID -->
}
{
ERROR RESPONSE "code": 1118,
"message": "The data are necessary."
}

The callback_url parameter lets you receive the outcome of the transaction and the relateddata.
Please see Par. “Payment outcomes”.

The formats of the fields requested in Input are as follows:

Describes the desired type of transaction.
PURCHASE means that the cardholder
would be charged immediately, AUTH
means preauthorization (an amount would
be only blocked on the card but not *1
charged), VERIFY means that the card
would be only verified if it is valid (note
that you must specify an amount greater
than zero, even if this amount would not
be used).

Enumerative:
transaction_type [PURCHASE,AUTH,VER
IFY]

Indicates the maximum waiting time for
transaction_timeout Numeric format string | the transaction, the value is expressed in
milliseconds.

Token identifying the customer’s wallet.
For example, the user’s e-mail or ID can be
passed to Worldline. See Par. “Making
one-click payments”

paylnstrToken String

Token identifying a tokenized card
belonging to the wallet corresponding to
“paylnstrToken”. It is not normally sent in
payCardToken String input but is returned in output to the
merchant after tokenizing.

See from Par. “Making one-click

payments”
Enumerative:
[UNSCHEDULED, . .
Indicator of the type of transaction to be
. RECURRENT, . .
txIndicatorType NOSHOW used when paying with the wallet. See
DELAYCHARGE] from Par. “Making one-click payments
. Enables card tokenizing. See from Par.
tokenize Boolean

“Making one-click payments”

! The fields indicated with an asterisk are mandatory

Unique identifier of the transaction on
merchant side. This string could be
optionally passed in input, if needed for
the merchant. Otherwise, a random string
would be generated by Worldline.
IMPORTANT: it is not possible to have two

hoplID Stri 64 . .
shop ring (max 64) o more successfully transactions with the
same shoplD. It means that if a transaction
fails, then the merchant may use again the
same shoplD. It means that if a transaction
succeeds, then the merchant must NOT
use again the same shoplD.
ISO 4217 format | Currency to be used according to ISO 4217
Currency . “ ”
string, e.g. “EUR format
ISO 639-1 format
string, possible values: | Language to be used in the client
Language . .
IT, EN, FR, RU, JP, CN, | implementation
NL, PL, ES, DE
Amount, formatted with two mandatory
decimal places, separated by a dot “.”. For
Amount String’ the “Verify” transaction_type, the amount
should be set to at least “0.01”
(uninfluential for authorization).
Notifications:
. Name of the Customer making the
name String
payment.
. . . Customer email address for sending
email e-mail format string I . .
notifications via email.
. Customer Smartphone number for sending
smartphone String o L. .
notifications via SMS.
Addresses:
Enumerative:
[SHIPPING,BILLING,SP .
type EDIZIONE, FATTURAZI Describes the address type.
ONE]
addresseeName String Address name.
streetAddress_1 String Street name.
streetAddress_2 String Additional field for Street name.
zip Po§tal code format Postal Code.
string
city String City.
rovinceState ISO 3166 format Province
P string, e.g. “RM”)
country String Country.

! All the string fields support a maximum of 2048 characters, unless specified

Page 18 of 98

Merchant site URL for modification in

addressesURI URL format string shipping fields, if necessary.
Products:
image String URL of the product image.
quantity String Product quantity.
description String Product description.
price String Product price.
For the Easy integration, when the
transaction has successfully concluded, the
application performs a REDIRECT to this
redirect_successUrl URL format string URL. URL must be in HTTPS.

This URL is also used in some alternative
payment methods, please see respective
documents, if needed.

redirect_failureUrl

URL format string

For the Easy integration, when the
transaction has incorrectly concluded, the
application performs a REDIRECT to this
URL. URL must be in HTTPS.

This URL is also used in some alternative
payment methods, please see respective
documents, if needed.

Merchant callback URL to receive the

callback_url URL format string outcome of the transaction
asynchronously. URL must be in HTTPS
If you would like to add additional
Additionals: information to the transaction, you can
specify this section.
key String Additional information key.
value String Additional information value.

WORLDLINE W7,

2.1.1 Example of Java Unirest integration

HttpResponse<String> response = Unirest.post("https://pay-test.axepta.it/api/vl/payment/initPayment")

.header("Content-Type", "application/json")

.header("x-license-key", "XXXXXXX-OERMYEO-MP683C5-9G0Q976")

.header("Authorization", "Bearer
eyJhbGciOiJSUzI1NilsInR5cClgOiAiSldUliwia2lkliA6IClkbklyWVVhRHFGbFOIUFQ4QIZ3bGE3bm8yN2IXaWNXd25
fVKNPAWZTTUR]In0.ey)qdGkiOil4YTZkZjdIZCOWZWIWLTRjNWMtOWIOMS1INjJRmZjJmNWUS5O0DYiLClleHAIOjE4
0DQzMzUzNzMsIm5iZileMCwiaWFOIjoxNTY40Tc1NzYxLClpc3MiOiJodHRwczovL3Nzby10ZXNOLmMF4ZXBOYS5p
dC9hdXRoL3JIYWxtcy9BeGVwdGEIMjBJbnRIcm5IdCIsInN1Yil6lmIINDYzN2M3LWQyZTktNDkxNCO4YmNKLWEO
Y2MxN;jliZDAzOCIsInR5cCI61kIIYXJIcilsImF6cCI6INnBNLXBheW 11bnQtYXBpLWIuzZXQiLCJhdXRoX3RpbWUIOjE1Njg
5NzUzNzMsInNIc3Npb25fc3RhdGUIOIJIN2E3MTg4MS01MGQ2LTQzN2QtODQyZS00MjAzNDcwYmY3N;jliLCIhY3
liOilwliwic2NvcGUiOiJveGVuaWQifQ.N_4xTX9FjGTMzFsc7fERvciU4RAdAXqCgeMoaymjScGCCSabZSApG5a-
ybeYTEAS5mCOhUWFwgyzSRLWTJhbnRz4vsc2vSwdROxY_YImbdC-y1IV-
IQkCLYOOEOwdI65sIc2fHAZIrBE3jVobnV6ee81meEGQeueMQ4L1hWO1u73ZIWKLzd_5YpRFKFD8HsNPKODdJV
6V201q2vgkJhfSOD9e3iln_ehugEs35m1ldyiwUwFXXnMeqlaK1QiVDdKTpZG5_46XJ3ixTfVQ-
3eBPqJCWS3WYPy4wqtfud850PT6NYuXDh-VKuGg2A13_2TAeFxQqvgGEU-RUGIAFROXTYOA")
.header("cache-control", "no-cache")

.body("{\r\n \"transaction_type\": \"PURCHASE\",\r\n \"currency\": \"EUR\",\r\n \"language\": \"IT\",\r\n
\"amount\": \"84.58\"\r\n \"notifications\": {\r\n \"name\": \"Paolo Verdi\",\r\n \"email\":
\"paoloverdi@axepta.it\",\r\n \"smartphone\": \"\"\r\n },\r\n \"addresses\": [\r\n {\r\n \"type\":
\"SHIPPING\",\r\n \"addresseeName\": \"Mario Bianchi\",\r\n \"streetAddress_1\":\"Via del Corso 1\",\r\n
\"streetAddress_2\": \"C/O Axepta.\",\r\n \"zip\": \"00100\"\r\n \'city\": \"Roma\",\r\n
\"provinceState\": \"RM\",\r\n \"country\": \"Italia\"\r\n },\r\n {\r\n \"type\": \"BILLING\",\r\n
\"addresseeName\": \"Francesco Bianchi\",\r\n \"streetAddress_1\": \"Via del Corso 1\",\r\n \"zip\":
\"00100\",\r\n \"city\": \"Roma\",\r\n \"provinceState\": \"RM\",\r\n \"country\": \"Italia\"\r\n }\r\n
I\r\n \"addressesURI\": \"https://www.shop.com\",\r\n \"products\": [\r\n {\r\n \"logo\":
\"https://www.shop.com/01.jpg\",\r\n \"quantity\": 1,\r\n \"description\": \"Product\",\r\n \"price\":
\"49.75\"\r\n }\r\n {\r\n \"logo\": \"https://www.shop.com/02.jpg\",\r\n \"quantity\": 1,\r\n
\"description\": \"Product description\",\r\n \"price\": \"34.83\"\r\n N\r\n],\r\n \"redirect_successUrl\":
\"https://www.shop.com\",],\r\n \"redirect_failureUrl\": \"https://www.shop.com\"\r\n \"callback_url\":
\"https://www.shop.com\",\r\n \"additionals\": [{\r\n \t\"key\": \"key_ 1\",\r\n \t\"value\":\"value_1\"\r\n
AN {\r\n \t\"key\": \"key_2\"\r\n \t\"value\":\"value_2\"\r\n }\r\n}")

.asString();

http://www.shop.com/01.jpg/
http://www.shop.com/02.jpg/
http://www.shop.com/02.jpg/

WORLDLINE W7,

2.1.2 Example of PHP http Request integration

<?php

Srequest = new HttpRequest();
Srequest->setUrl('https://pay-test.axepta.it/api/vl/payment/initPayment');
Srequest->setMethod(HTTP_METH_POST);

Srequest->setHeaders(array(

'cache-control' => 'no-cache’,

'Authorization’ => '‘Bearer
eyJhbGciOiJSUzI1NilsInR5cClgOiAiSIdUliwia2lkliA6ICIkbk)yWVVhRHFGbFIIUFQ4QIZ3bGE3bm8yN2IXaWNXd25
fVKNPAWZTTURjINO.ey)qdGkiOil4YTZkZjdIZCOWZWIWLTRINWMtOWIOMS1INjJRmZjJmNWUS5O0DYiLCJleHAIOjE4
0DQzMzUzNzMsIm5iZileMCwiaWFOIjoxNTY40Tc1NzYxLClpc3MiOiJodHRwczovL3Nzby10ZXNOLmMF4ZXBOYS5p
dC9hdXRoL3JIYWxtcy9BeGVwdAGEIMjBJbnRIcm5IdClsInN1Yil6lmIINDYzN2M3LWQyZTktNDkxNCO4YmNKLWEOQ
Y2MxN;jlizDAzOClIsInR5cClI61kIIYX]IcilsimF6cCI6InBnLXBheW 1IbnQtYXBpLWIuzZXQiLCJhdXRoX3RpbWUIOjE1Njg
5NzUzNzMsInNIc3Npb25fc3RhdGUIOIJIN2E3MTg4MS01MGQ2LTQzN2QtODQyZSO00MjAzNDcwYmY3N;jliLCIhY3
liOilwliwic2NvcGUiOilveGVuaWQifQ.N_4xTX9FjGTMzFsc7fERvciU4RAdXqCgeMoaymjScGCCSabZSApG5a-
ybeYTEAS5mCOhUWFwgyzSRLWTJhbnRz4vsc2vSwdROxY_YImbdC-y1IV-
|QkCLYOOEOwdI65sIc2fHAZIrBE3jVobnV6ee81meEGQeueMQ4L1hWO1u73ZIWKLzd_5YpRFKFD8HsSNPKODdIV
6V201q2vgkJhfSOD9e3iln_ehugEs35m1ldyiwUwFXXnMeqlaK1QiVDdKTpZG5_46XJ3ixTfVQ-
3eBPqJCwS3WYPydwqtfud850PT6NYuXDh-VKuGg2A13_2TAeFxQqvgGEU-RUGJdFxxxxxxx',

'x-license-key' => "XXXXXXX-OERMYEO-MP683C5-9G0Q976',

'Content-Type' => 'application/json’

);
Srequest->setBody('{

"transaction_type": "PURCHASE",

"currency": "EUR",

"language": "IT",

"amount": "84.58",

"notifications": {

"name": "Paolo Verdi",

"email": "paoloverdi@axepta.it",

"smartphone":
|3
"addresses": [
{
"type": "SHIPPING",
"addresseeName": "Mario Bianchi",
"streetAddress_1": "Via del Corso 1",
"streetAddress_2": "C/O Axepta.",
"zip": "00100",
"city": "Rome",
"provinceState": "RM",
"country": "ltaly"

"type": "BILLING",

"addresseeName": "Francesco Bianchi",
"streetAddress_1": "Via del Corso 1",
"zip": "00100",

mailto:paoloverdi@axepta.it

WORLDLINE W7,

“City": "ROme“,
"provinceState": "RM",
"country": "ltaly"

}
1,
"addressesURI": "https://www.shop.com",
"products": [
{
"logo": "https://www.shop.com/01.jpg",
"quantity": 1,
"description": "Product",
"price": "49.75"
2
{
"logo": "https://www.shop.com/02.jpg",
"quantity": 1,
"description": "Product description”,
"price": "34.83"
}
L,

"redirect_successUrl": "https://www.shop.com",
"redirect_failureUrl": "https://www.shop.com",
"callback_url": "https://www.shop.com",
"additionals": [{

"key": "key_1",

"value": "value_1"

|3
{
"key": "key_2",
"value": "value_2"
1
¥
try {

Sresponse = Srequest->send();

echo Sresponse->getBody();
} catch (HttpException $ex) {
echo Sex;

}

http://www.shop.com/
http://www.shop.com/
http://www.shop.com/01.jpg
http://www.shop.com/01.jpg
http://www.shop.com/02.jpg
http://www.shop.com/
http://www.shop.com/
http://www.shop.com/
http://www.shop.com/
http://www.shop.com/

WORLDLINE sW7

2.1.3 Example of Node Request integration

var request = require("request");

var options = { method: 'POST,
url: 'https://pay-test.axepta.it/api/vl/payment/initPayment’,
headers:
{ cache-control': 'no-cache’,

Authorization: '‘Bearer
eyJhbGciOiJSUzI1NilsInR5cClgOiAiSIdUliwia2lkliA6ICIkbk])yWVVhRHFGbFIIUFQ4QIZ3bGE3bm8yN2IXaWNXd25
fVKNPAdWZTTURjINO0.ey)qdGkiOil4YTZkZjdIZCOWZWIWLTRINWMtOWIOMS1INjJRmZjJmNWUS50DYiLClleHAIOjE4
0ODQzMzUzNzMsIm5iZileMCwiaWFOIjoxNTY40Tc1NzYXLCIpc3MiOiJodHRwczovL3Nzby10ZXNOLmMF4ZXBOYS5p
dC9hdXRoL3JIYWxtcy9BeGVwWAGEIM]jBJbnRIcm5IdCIsINN1Yil6ImIINDYzN2M3LWQyZTktNDkxNCO4YmNKLWEO
Y2MxN;jliZDAzOCIsInR5cCl6IkIIYXJIcilsimF6cCl6InBnLXBheW 1lbnQtYXBpLWIuZXQiLCJhdXRoX3RpbWUIOjE1Njg
5NzUzNzMsInNIc3Npb25fc3RhdGUIOIJIN2E3MTg4MS01MGQ2LTQzN2QtODQyZS00MjAzNDcwYmY3NjliLCIhY3
liOilwliwic2NvcGUIiOilveGVuaWQifQ.N_4xTX9FjGTMzFsc7fERvciU4RAdAXqCgeMoaymjScGCCSabZSApG5a-
ybeYTEAS5mCOhUWFwgyzSRLWTJhbnRz4vsc2vSwdROxY_YImbdC-y1IV-
IQkCLYOOEOwWdI65sIc2fHAZIrBE3jVobnV6ee81meEGQeueMQ4L1hWO1u73ZIWKLzd_5YpRFKFD8HsNPKODdIV
6V201q2vgkJhfSOD9e3iJn_ehugEs35m1dyiwUwFXXnMeqlaK1QiVDdKTpZG5_46XJ3ixTfVQ-
3eBPqJCwS3WYPy4wqtfud850PT6NYuXDh-VKuGg2A13 2TAeFxQqvgGEU-RUGIdFRxxxxxx',

'x-license-key': "XXXXXXX-OERMYEO-MP683C5-9G0Q976',

'Content-Type': 'application/json' },

body:
{ transaction_type: 'PURCHASE',

currency: 'EUR',

language: 'IT',

amount: '84.58',

notifications:

{ name: 'Paolo Verdi',

email: 'paoloverdi@axepta.it’,
smartphone: " },

addresses:

[{ type: 'SHIPPING',
addresseeName: 'Mario Bianchi',
streetAddress_1: 'Via del Corso 1',
streetAddress_2: 'C/O Axepta',
zip: '00100',
city: 'Rome’,
provinceState: 'RM',
country: 'ltaly' },

{ type: 'BILLING',
addresseeName: 'Francesco Bianchi',
streetAddress_1: 'Via del Corso 1',
zip: '00100',
city: 'Rome’,
provinceState: 'RM’,
country: 'ltaly' }],

addressesURI: 'https://www.shop.com’,

products:

[{logo: 'https://www.shop.com/01.jpg',

quantity: 1,
description: 'Product’,

http://www.shop.com/01.jpg%27

WORLDLINE sW7

price: '49.75'},
{logo: 'https://www.shop.com/02.jpg',
quantity: 1,
description: 'Product description’,
price: '34.83'}],
redirect_successUrl: 'https://www.shop.com’,
redirect_failureUrl: 'https://www.shop.com’,
callback_url: 'https://www.shop.com’,
additionals:
[{ key: 'key_1', value: 'value_1'},
{ key: 'key_2', value: 'value_2'}1},
json: true };

request(options, function (error, response, body) {
if (error) throw new Error(error);

console.log(body);
H;

http://www.shop.com/02.jpg%27
http://www.shop.com/02.jpg%27

WORLDLINE 7.

3 Types of integration

According to Business needs, the merchant can choose one of the following integration methods:
® APl checkout
e Easy checkout
® Smart checkout
® In-App checkout (SDK iOS)

® In-App checkout (SDK Android)

These types of integration are described in the sections that follow.

WORLDLINE W7

4 API checkout

Worldline APIs can be used to integrate the payment request within your website (the card data is
managed by the merchant’s server). This type of integration has the highest level of personalization
but also the highest implementation complexity on the merchant side. For this reason, it is only
applicable to special needs.

4.1 Payment execution (execute)
The integration flow for performing an APl Checkout integration (Server to server), in the simplest
NO 3DS case, is set out below:

ECOMMERCE BROWSER
{SERVER) {CLIENT) WORLDLINE

START 1. initPayment [;‘p

1
1
1
1
1 L. response
. <_] {paymentiD)
1 1
1 1
1 1
1 1
1 1
1 1
3. execute [:p
"
1
1. response
END d‘:: (ND 3D5)

e Invoke the initPayment service and retrieve the PaymentID parameter necessary forthe
subsequent calls;
e Invoke the execute service using the PaymentID obtained from the initPayment call

The execution call has three possible answers in Output:
e The outcome of the transaction
e An HTML string (next section)

e Astring containing a URL (next section)
The specifications of the payment execution call are below:

1. . L . .
This difference is given by the type of card used to make the payment: if the card, or the terminal used, are NOT enabled for 3DSecure,
the response will be the outcome of the transaction; otherwise you will receive anHTML string or a string containing a URL. The actions to

be taken if the card is enabled for 3DSecure will be explained in the next section.

METHOD

POST

END POINT

{{host server to server}}/api/vl/payment/execute/ < PaymentID -

HEADERS

“Content-type”: application/json
“Authorization”: Bearer € ACCESS_TOKEN >
“X-license-key": € API License Key -

Card data in input without tokenizing enabled:

(BODY)
PARAMETERS

{
"card_number":"4111111111111111",

"card_cwv": "123",
"card_expiration": "1023",
"card_brand": "VISA",
"name": "Mario",
"surname": "Rossi",
"tokenize": true

Previously tokenized card data (Tokenizing enabled):

(BODY)
PARAMETERS

{
"paylnstrToken": "LhyjhaVzC7bqDh7DPkhoxg2ktADWRqzn",

"payCardToken": "1uPlsusK1LXiD84TStkngiOPIRqUkHkM"

The two possible responses

in Output are:

RESPONSE NO 3DS

{

"mid": "merchantID",

"instrument": "CREDITCARD",

"operation_type": "PAYMENT",

"isHTML": false,

"transactionAt": "2019-11-29T15:17:19.373Z2",

"tid": "08000001",

"shopID": "AfghuojN7LCJw6UstZMVoPwo2QGNX8N7",
"transaction_status": "PG_000",

"token": "nloSObPgZq8F27wcH4a5LNoOd2XVM55v",
"maskedPan": "411111******1111",

"brand": "VISA",

"transactionID": "3079905680585024",

WORLDLINE aW7

"authCode": "288380",

"xid": "MDAzMzMzODI4MzMxMjlzOTU2Nzc=",
"transaction_code": "01010", "description_status":
"TRANSACTION OK"

RESPONSE NO 3DS KO {
"mid": "merchantID",

"instrument": "CREDITCARD",

"operation_type": "PAYMENT",

"isHTML": false,

"transactionAt": "2019-11-29T15:17:19.373Z",

"tid": "08000001",

"shopID": "AfghuojN7LCIJw6UstZMVoPwo2QGNX8N7",
"transaction_status": "PG_001"

"transaction_code": "00001",

"description_status": "Generic error."

}
ERROR RESPONSE {
“code": 1118,
"message": "The data are necessary.",
}
The formats of the fields requested in Input without tokenizing are as follows:
Field Name Format _ Description
card_number String Card number *1
card_cwv String CVV number **2
card_expiration MMYY format string Card expiry date in the indicated | ,
Format
Brand of the card used. The string must
card_brand String be all uppercase and without spaces.
e.g. MASTERCARD.
name String Cardholder name.
surname String Cardholder surname.
tokenize Boolean Boole.an th‘at allows th(‘e card to be
tokenized, if the feature is enabled.

The formats of the fields requested in previously tokenized input are as follows:

Field Name Format Description

paylnstrToken String Unique ID of the wallet. For example,
the user’s e-mail or ID can be passed to

1 The fields marked with an asterisk are mandatory
2The fields marked with two asterisks are conditional, e.g. optional for a Mo.To terminal.

Axepta. See Par. “Making one-click
payments”

payCardToken String Unique ID of the tokenized card. See
Par. “Making one-click payments”

The formats of the fields received in Output are as follows:

tid String Identification of the terminal used.

. . Payment instrument used (e.g.
nstrument String CREDITCARD, MYBANK, ...).
operation_type String Payment type (e.g. PAYMENT)

mid String Merchant identifier.

Identifies whether the response contains

ISHTML Boolean an HTML code for the use of 3dSecure.
transactionAt String Payment execution date.

shopID String Foreign key identifying the payment.
transactionlD String Order code processed.

Identification code of the outcome of the

transaction_status | Enum: [‘PG_000’, ‘PG_001'] .
transaction.

authCode String Authorization code returned by the issuer.

Credit card brand (e.g. VISA,

brand String MASTERCARD, ...

maskedPan String Masked card number.

token String Payment instrument token.

xid String Foreign code created by the ACS.

Error code identifying the status of the

transaction_code | String transaction

description_status | String Return code description.

WORLDLINE W7,

4.1.1 Example of Java Unirest integration

HttpResponse<String> response = Unirest.post("https://pay-
test.axepta.it/api/vl/payment/execute/950fb6770c43c93803f4a84f2750671115a5df75664295ea519a055d75
bdb6aa")

.header("Content-Type", "application/json")

.header("x-license-key", "XXXXXXX-OERMYEO-MP683C5-9G0Q976")

.header("cache-control", "no-cache")
body("{\r\n \"card_number\": \"4111111111111112\",\r\n \"card_cvv\":\"111\",\r\n
\"card_expiration\":\"1023\",\r\n \"card_brand \":\"VISA\"\r\n}")

.asString();

4.1.2 Example of PHP Http Request integration

<?php

Srequest = new HttpRequest();

Srequest->setUrl('https://pay-
test.axepta.it/api/vl/payment/execute/950fb6770c43c93803f4a84f2750671115a5df75664295ea519a055d75
bdb6aa');

Srequest->setMethod(HTTP_METH_POST);

Srequest->setHeaders(array(
'Postman-Token' => '66b92915-d0d6-4faa-8d04-9¢ce91d17b730',
'cache-control' => 'no-cache’,
'x-license-key' => "XXXXXXX-OERMYEO-MP683C5-9G0Q976',
'Content-Type' => 'application/json’

)

Srequest->setBody('{
"card_number": "4111111111111111",
"card_cwv ":"111",
"card_expiration":"1023",
"card_brand ":"VISA"

YY)

try {
Sresponse = Srequest->send();

echo Sresponse->getBody();
} catch (HttpException Sex) {
echo Sex;

WORLDLINE W7,

4.1.3 Example of Node Request integration

var request = require("request");

var options = { method: 'POST’,

url: 'https://pay-
test.axepta.it/api/vl/payment/execute/950fb6770c43c93803f4a84f2750671115a5df75664295ea519a055d75
bdb6aa’,

headers:

{'cache-control": 'no-cache’,
'x-license-key': "XXXXXXX-OERMYEO-MP683C5-9G0Q976',
'Content-Type': 'application/json'},
body:
{card_number:'4111111111111111",
card_cvv: '111",
card_expiration: '1023',
card_brand: 'VISA' },
json: true };

request(options, function (error, response, body) {
if (error) throw new Error(error);

console.log(body);

N;

WORLDLINE 7.

4.2 Payment execution with 3DS
The previous section described the API Checkout flow for the simplest case without 3DS. This section
describes the integration flow for executing an API Checkout (Server to server)integration with 3DS
(version 1 and version 2):

ECOMMERCE BROWSER

{SERVER) (CLIENT) WORLDLINE

1. initPayment {>

4 2. response
[paymentlD)

(:} 2. response
(iIsHTML/is302)

—— 5. send render | redirect url — >

e Invoke the initPayment service and retrieve the PaymentID parameter necessary for the
subsequent calls;

e Invoke the execute service using the PaymentID obtained from the initPayment call

e Render the HTML returned by the execute in the case of isHTML or redirect the URL obtained
in the case of is3D2

As mentioned in the previous section, the execution call has three possible answers inOutput:
e The outcome of the transaction (previous section)
® An HTML strings
e Astring containing a URL

The possible responses for the latter two cases are indicated below:

RESPONSE 3DS OK {
"code": 200,
"message": "SUCCESSFULLY",
"isHTML": true,
"response": <-- HTML string -->
}
RESPONSE 3DS KO {
"code": 200,
"message": "SUCCESSFULLY",
"iSHTML": true,
"response": “”
}
RESPONSE 3DS 2.0 OK {
"code": 200,
"message": "SUCCESSFULLY",
"is3D2": true,
"response": <-- URL ACS 3DSecure2.0 -->
}
RESPONSE 3DS 2.0 KO {
"code": 200,
"message": "SUCCESSFULLY",
"is3D2": true,
"response": “”
}
ERROR RESPONSE {
"code": 1118,
"message": "The data are necessary.",
}

The actions to be taken for payments with a 3DS or 3DS 2.0-enabled card are shown below (the
parameters to be checked are "is HTML" and "is3D2" in response to execute) are indicated below:

o 3DS: There will be an HTML string in response to the payment execution call; it mustbe
inserted into an <iframe> using the "srcDoc" attribute, or it can be inserted as a Blob in the
"src" attribute.

e 3DS 2.0: There will be a string containing a "URL" in response to the execution call; this must
be inserted into an <iframe> via the "src" attribute.

The 3DS page relating to the scheme used by the card will then be automatically displayed.

Within the iframe, the user will perform the challenges necessary to complete the authentication
requested by the payment provider.

Once the authentication is complete, the rendering will take place within the iframe of a pagewith the
outcome of the transaction.

With the rendering of the outcome, an event will be triggered on the web page where theiframe
resides, which indicates the end of the transaction.

The event is triggered with a script that invokes the window.postMessage() method.

window.top.postMessage(‘axepta_ SUCCESS _message’, ‘*’);

If the transaction is concluded successfully, an “axepta_SUCCESS_message” will be displayed.
If the transaction fails, the message will be “axepta_FAILURE_message”.

This event can be intercepted via a listener on the web page. When the event is intercepted,the
transaction is concluded.

Additionally, the callback is sent to the merchant backend. Please see Par. “Paymentoutcomes”.

A direct payment can be made via a Server-To-Server call, that is, without having to invoke an
initPayment. This type of call is necessary in special cases, for example, for Mo. To transactions.

The data of the credit card or the token that identifies the payment instrument must be entered in
the request. A terminal of those configured in the Merchant can also be specified.

The specifications of the payment call are below:

METHOD POST

ENDPOINT {{host server to server}}/api/vl/payments/directPayment

“Content-type”: application/json
HEADERS “Authorization”: Bearer <-- AccessToken -->
“x-license-key": <-- API License Key -->

Card data in input without tokenizing:

(BODY) "tid": "08000001",
PARAMETERS "transaction_type": "PURCHASE",
“currency": "EUR",
"language": "IT",
"amount": "84.58",
"card_number": "4557773333333335",
“card_expiration": "1122",
"card_brand": "VISA",
"notifications": {
"name": "Mario Rossi",
"email": "test@test.it",
"smartphone": "3332233220"
|3

"callback_url": "https://www.merchantSite.it/callback",
"additionals": [{

llkeyll: IITeStII'
"value": "Value"

"key": "Prova2",
"value": "Valore2"

1

Card data tokenized previously (Tokenizing enabled):

mailto:test@test.it
http://www.merchantsite.it/callback

)RLDLINE s\

(BODY)
PARAMETE
RS

"tid": "08000001",
"transaction_type": "PURCHASE",
"currency": "EUR",
"language": "IT",
"amount": "84.58",
"paylnstrToken": "test@test.it",
"payCardToken": "1uPlsusK1LXiD84TStkngiOPIRqUkHkM",
"txIndicatorType": "UNSCHEDULED",
"notifications": {
"name": "Mario Rossi", "email":
"test@test.it", "smartphone":
"3332233220"
2
"callback_url": "https://www.merchantSite.it/callback",
"additionals": [{
"key": "Test",
"value": "Value"

"key": "Test2",
"value": "Value2"

mailto:test@test.it
mailto:test@test.it
http://www.merchantsite.it/callback

The two possible responses in Output are:

{
RESPONSE OK "mid": "merchantID",
"paymentld": "<--PAYMENTID-->",
"instrument": "CREDITCARD",
"amount": "5.67",
"currency": "EUR",
"language": "IT",
"transaction_type": "PURCHASE",
"operation_type": "PAYMENT",
"addresses": [],
"products": [],
"notification": {
"name": "Marizio Moriconi",
"email": "test@test.it",
"smartphone": ""
|3
"additionals": [
{
"key": "Test",
"value": "Value"
2
{
"key": "Test2",
"value": "Value2"
}
1,
"callback_url": "https://www.shop.com",
"transactionAt": "2019-11-29T15:38:58.2237",
"shopID": "rltCFPnM7sv3uazR4CiC3ilrTXai08SH",
"tid": "08000001",
"transaction_status": "PG_000",
"token": "9qGHUSU30SYzvnOumztHdmBuUPbi509)G",
"maskedPan": "411111******1111",
"brand": "VISA",
"transactionID": "3079905820823791",
"transaction_code": "01010",
"description_status": "TRANSACTION OK"

mailto:test@test.it
http://www.shop.com/

"mid": "merchantID",
"paymentld": “<--PAYMENTID-->*,
"instrument": "CREDITCARD",
"amount": "5.67",
"currency": "EUR",
"language": "IT",
"transaction_type": "PURCHASE",
"operation_type": "PAYMENT",
"addresses": [],
"products": [],
"notification": {
"name": "Marizio Moriconi",
"email": "test@test.it",
“smartphone": ""
|3
"additionals": [
{
"key": "Test",
"value": "Value"

"key": "Test2",
"value": "Value2"
}
1,

"callback_url": "https://www.shop.com", "transactionAt":
"2019-11-29T15:38:58.2237",

"shopID": "rltCFPnM7sv3uazR4CiC3ilrTXai08SH",

"tid": "08000001",

"transaction_status": "PG_001",

"transaction_code": "00001",

"description_status": "Generic error."

ERROR RESPONSE | {
"code": 1118,
"message": "The data are necessary."

mailto:test@test.it
http://www.shop.com/

The formats of the fields requested in Input are indicated below:

tid

Numerical string

Numeric identifier of the terminal
to be used.

transaction_type

Enumerative:

Describes the type of transaction

[PURCHASE,AUTH,VERIFY] desired. "1
currency ISO 4217 format string, e.g. | Currency to use. "
"EUR"
language ISO 639-1 format string, e.g. | Language to be used in the client | ,
"IT" implementation.
amount String Amount, formatted with two
mandatory decimal places, | *
separated by a dot "."
Notifications:
name String Name of the Customer making the
payment.
email Email format string Customer email address for sending
notifications via email.
smartphone String Customer Smartphone number for
sending notifications via SMS.
card_number String Card number. *%2
card_expiration MMYY format string Card expiry in the indicated format. | **
card_brand String Brand of the card used. The string
must be all uppercase.
Token identifying the customer’s
wallet. For example, it can be used
paylnstrToken String to pass the user’'s email or the | **
user’s ID to e-commerce. See Par.
“Making one-click payments”
Unique token identifying a
payCardToken String tokenized card. See Par. “Making ok
one-click payments”
. Cvv number. It is not needed if it is
card_cwv String ok

a Mo.To. transaction

txIndicatorType

Enumerative:[UNSCHEDULED,
RECURRENT, NOSHOW,

Indicator of the type of transaction
to be used for a wallet payment.
See Par. “Making one-click

DELAYCHARGE] ”
payments
Boolean that enables the card to be
. tokenized, if the feature is enabled.
tokenize Boolean

See Par. “Making one-click
payments”

1The fields indicated with an asterisk are mandatory
2The fields indicated with two asterisks are conditional.

WORLDLINE aW7

Merchant callback URL to receive
callback_url URL format string the outcome of the transaction. *
URL must be in HTTPS

Additionals:
key String Additional information key.
value String Additional information value.

The card data is required if and only if paylnstrToken and payCardToken are not entered.See Par.
“Making one-click payments”.

Field Name Format Description

mid String Merchant identifier.

paymentld String Axepta payment identifier.

. . Payment instrument used (e.g.
Instrument String CREDITCARD, MYBANK, ...).
operation_type String Payment type (e.g. PAYMENT)

transaction_type

Enumerative:
[PURCHASE,AUTH,VERIFY]

Describes the type of transaction desired.

ISO 4217 format string, e.g.

Currency to be used according to ISO 4217

currency "EUR" format
ISO 639-1 format string,
language possible values: Language to be used in the client
IT, EN, FR, RU, JP, CN, NL, PL, | implementation
ES, DE
amount String® Amgunt, formatted with two mandatory
decimal places, separated by a dot "."
Notifications:
. Name of the Customer making the
name String
payment.
. . . Customer email address for sending
email E-mail format string e . .
notifications via email.
smartphone String Custgmer . .Sma.rtpho.ne number for
sending notifications via SMS.
Addresses:
type I[Esnmr:;ﬁg’v;'l_UNG] Describes the address type.
addresseeName String Address name.
streetAddress_1 String Street name.
streetAddress_2 String Additional field for Street name.
zip Postal Code format string Postal Code.
city String City.

The formats of the fields received in Output are as follows:

ISO 3166 format string, e.g.

provinceState "RM" Province.
country String Country.
addressesURI URL format string Mferc.hant. site .URL for modification to
shipping fields, if necessary.
Products:
logo String Reference to the product image.
quantity String Product quantity.
description String Product description.
price String Product price.
If you would like to add additional
Additionals: information to the transaction, you can
specify this section.
key String Additional information key.
value String Additional information value.
Merchant callback URL to receive the
callback_url URL format string outcome of the transaction. URL must be
in HTTPS
tid String Identifier of the terminal used.
transactionAt String Payment execution date.
shoplD String Foreign key identifying the payment.
transactionID String Order code processed.
transaction_status Enum: [PG_000’, PG_001'] Identificgtion code of the outcome of the
transaction.
authCode String Authorization code returned by the issuer.
. Credit card brand e.g. VISA,
brand String MASTERCARD, ...). e
maskedPan String Masked card number.
xid String Foreign code created by the ACS.
transaction_code String Error cer identifying the status of the
transaction.
description_status String Return code description.
Unique token identifying a wallet. For
paylnstrToken String example, the user’s e-mail or ID can be
passed to e-commerce. See Par. “Making
one-click payments”
payCardToken String Unique token identifying a tokenized card.

See Par. “Making one-click payments”

WORLDLINE W7

5 Easy checkout
Once configured, this integration, upon checkout, performs a redirect to the payment page provided
by Worldline.
The compatible versions of the browsers are as follows:

e Chrome 51 May 2016
e Firefox 54 Jun 2017
e Edge 14 Aug 2016
e Safari 10 Sep 2016
e QOpera 38 Jun 2016
e |E11
The integration flow for performing an Easy integration is shown below:

ECOMMERCE BROWSER
(SERVER) [CLIENT}) WORLDLINE
'
1
1
1
1
1
START 1. initPayment [

'
1

<.] 2. response

{paymentiD)

3. proceedToPayment
(SDK AXEPTA)

e Invoke the initPayment service and retrieve the PaymentID parameter necessary for the
subsequent calls;

e |nitialize the clientAxepta with the Easy license key and the PaymentID (returned by
initPayment) to invoke the proceedToPayment javascript function.

An example of the Easy integration is shown below:

WORLDLINE 7.

<IDOCTYPE html>

<html>

<head>
<title>SDK Redirect Integration Example</title>
<meta name="viewport" content="initial-scale=1.0">
<meta charset="utf-8">

</head>

<body>
<button type="button" onClick="axeptaClient.proceedToPayment('€< Paymentld =2')">Checkout</button>

<script src="https://pay-test.axepta.it/sdk/axepta-pg-redirect.js"></script>
<script type="text/javascript">
let axeptaClient = new AxeptaSDKClient("https://pay-test.axepta.it"," € Easy type LICENSE Key =2");
</script>
</body>
</html>

Please see Par. “Payment outcomes” for explanations on how to get transaction results.

WORLDLINE s\W7.

6 Smart checkout
This type of integration is a simple implementation of the card fields that can be integrated within
your site. Unlike the Easy integration, the Smart integration requires that a div is created within your
e-commerce site. In this case the fields of interest (for example, those ofthe card for the payment) will
be displayed inside the div itself.
The compatible versions of the browsers are listed below:

e Chrome 51 May 2016
e Firefox 54 Jun 2017
e Edge 14 Aug 2016
e Safari 10 Sep 2016
e Opera38 Jun 2016
e |E11
The integration flow for performing a Smart integration is shown below:

ECOMMERCE BROWSER
{SERVER) {CLIENT) AXEFTA
1
1
1
1
.
1
@ 1. initPayment [}

1
.

{] 2. response

[payment|D}

3.preparePayment [:
[SDK AXEPTA)

e Invoke the initPayment service and retrieve the PaymentID parameter necessary forthe
subsequent calls;

e |Initialize the clientAxepta with the Smart license key and the PaymentID (returned by
initPayment) to invoke the preparePayment javascript functionAn

example of Smart integration is shown below:

<IDOCTYPE html>
<html>
<head>
<title>SDK JS Integration Example</title>
<meta name="viewport" content="initial-scale=1.0">

WORLDLINE 7.

<meta charset="utf-8">
</head>
<body>
<I|—EXAMPLE OF CHECKOUT BUTTON -->
<button type="button"
onClick="axeptaClient.preparePayment('< paymentID =','inline')">Checkout</button>
<!-- THE TAG WHERE THE HOSTED FORM WILL BE DISPLAYED -->
<div id="my-axepta-sdk-pg"></div>
<!-- THE SCRIPT TO BE RETRIEVED BY CDN -->
<script src="https://pay.axepta.it/sdk/axepta-pg-sdk.js"></script>
<!—INITIALIZATION OF CLIENT AND USE -->
<script type="text/javascript">
let axeptaClient = new AxeptaSDKClient("https://pay-test.axepta.it"," €< Smart LICENSE =");
</script>
</body>
</html>

Please see Par. “Payment outcomes” for explanations on how to get transaction results.

WORLDLINE W7,

6.1Smart layout management
In this integration, you can define three different layouts using an optional parameter withinthe
feature described above:

axeptaClient.preparePayment(‘é--PaymentID-->, ‘é-- Layout -->’);

If you do not enter the Layout parameter, the default layout will be displayed:

Nome Cognome

1234 1234 1234 1234

MM/AA ‘ ‘ CW

PAY

To obtain a layout with no name and surname, the preparePayment() call must contain a second
parameter that is 'compact':

axeptaClient.preparePayment('é&- PaymentID -->', ‘compact’);

1234 1234 1234 1234

MM/AA Cw

PAY

)RLDLINE s\

If you would like an inline layout without the PAY button, the preparePayment() call must contain
a second parameter that is ‘inline":

axeptaClient.preparePayment('¢&- PaymentID -->', 'inline’);

(VISA 4557 7733 3333 3335 10/23 e M J

and in the script, the form can be posted with the method axeptaClient.submit();

<!-- ESEMPIO DI PULSANTE SUBMIT -->
<button id="submit" type="button" onClick="axeptaClient.submit ()">Submit</button>

If you would like to control the button for proceed with payment, then the preparePayment() call
must contain a second 'buttonless’ parameter:

axeptaClient.preparePayment('¢&- PaymentID -->', 'buttonless’);

Nome Cognome

1234 1234 1234 1234

MM/AA CW

and in the script, the form can be posted with the method axeptaClient.submit();

<!-- ESEMPIO DI PULSANTE SUBMIT -->
<button id="submit" type="button" onClick="axeptaClient.submit ()">Submit</button>

WORLDLINE sW7.

6.2Smart layout personalization
A number of style classes which you can modify to personalize the Smart layout are listed below:

Class Description

axepta-sdk-textfield-outlined

Class that defines the text input style with
Outline layout.

axepta-sdk-textfield-outlined:focus:invalid

Class that defines the text input style
when in the focus state and the valueentered
is invalid.

axepta-sdk-textfield-outlined:focus:valid

Class that defines the text input style
when in the focus state and the valueentered
is valid.

axepta-sdk-textfield-
outlined:valid:not(:focus):not(:placeholder-
shown)

Class that defines the text input style when
not in the focus state, the valueentered is valid
and the PlaceHolder of the ield is not
displayed.

axepta-sdk-button-contained

Class that defines the style of the button that
executes the payment.

axepta-sdk-button-contained:disabled

Class that defines the style of the button that
executes the payment, when it is in the
disabled state. In particular, it is in this state if
the values in the fields are invalid or the fields
are empty.

axepta-sdk-button-contained:not(:disabled)

Class that defines the style of the buttonthat
executes the payment, when it is not in the
disabled state.

The table of the classes for personalizing the “inline” layout is shown below:

axepta-sdk-textfield-outlined-inline

Class that defines the container of theentire
Widget

axepta-sdk-flex-row-inline

Defines the style of the line.

axepta-sdk-textfield-outlined-noBorder-Pan

Defines the borderless style of the Paninput.

axepta-sdk-input-add-on-inline

Manages the position of the Pan input for the
parent.

axepta-sdk-flex-col-inline

Sets the Pan input as a column.

axepta-sdk-pan-icon-inline

Container of the panicon.

axepta-sdk-input-add-on-item-inline

Manages the position of the Pan icon, for the
parent.

axepta-sdk-flex-row-inline-cvv

Container for the expiry and cvv inputs.

axepta-sdk-flex-col-left-inline

Manages the position to the left of the
expiry input, for the parent.

axepta-sdk-textfield-outlined-noBorder

Defines the borderless style of the expiry
input.

axepta-sdk-pan-icon-inline-cvv

Container for the cvv input and its icon.

axepta-sdk-flex-col-right-inline

Manages the position to the right of the cvv
input, for the parent.

axepta-sdk-textfield-outlined-noBorder-cvv

Defines the borderless style of the cvv
input.

axepta-sdk-input-add-on-item-inline-cvv

Defines the position of the cvv icon for the
parent.

WORLDLINE aW7

7 In-App checkout (SDK iOS)

7.1 Functional Requirements
iOS version supported: from 11.0 to 14.2Xcode 12

7.2Introduction
The WorldlineSDKClient framework allows payments to be made on the enabled schemes by:

® enabling a payment context managed completely by SDK
e integrating a graphic widget

e direct calls to make a payment on a determinate scheme

7.3 Adding SDK to the project
Follow the steps below to add SDK:

1. Open the project with Xcode and drag the WorldlineSDKClient.xcframework file onto the
“project navigator”, checking that the "copy items if needed" and "Add to targets" items are
enabled:

Choose options for adding these files:

Destination: Copy items if needed

Added folders: @) Create groups
Create folder references

Add to targets: " AxeptaDemo
AxeptaDemoTests

2. At this point the "project navigator" should display the framework:

WORLDLINE aW7

il
y
il

B XS QA O

v @ AxeptaDemo M
¥ AxeptaDemo

53 AxeptaSDKClient.xcframework

3. Check that the framework is present on the “General” tab of the Target in the “Frameworks,
Libraries and Embedded contents” section (with the “Embed & Sign” option enabled):

¥ Frameworks, Libraries, and Embedded Content

Name Embed
Axepta KClient.xcframeworl mbe an o
e SDKCIi f k Embed & Sign

4

4. Check that the framework is present in the Build Phases, in the “Link Binary with Libraries’
and “Embed Frameworks” sections:

[] General Signirg & Capabilitizs Resource Tags Info Build Settings Build Phases Build Rules

PROJECT + ®

& AxeptaDemo
TARGETS

AxeptaDan
b Compils Sources (18 tame

| AxzptaDemolTests

» Dependencies (0 items)

¥ Link Binary With Libraries {1 item) X
Name Status
AxentaSOKClient weframework Reauired
-+ D&y ta reorder linked binaries

» Copy Bundle Resources (7 items)
¥ Embed Frameworks (1 item) x

Destination Framaworks B
Subpath
Copy only when instdling
Name Code Sign On Copy
B8 AxeptaSDKClient,xcframework .../ AxoptaDemo/Framawark

WORLDLINE 7.

5. If it is not present, select the + sign at the bottom of the “Frameworks, Libraries and
Embedded contents” section and add it by hand, activating the “Embed & Sign” option if not
enabled:

B AxeptaDemo Choose frameworks and libraries 1o add:
D Genera Signing a Juild Phases Build Rules
~

PR T v
I0JEC v [AxeptaDemo Project

s
= AxeptaDemo | AxeptaDemoTests. xctest

=" AxeptaDemo ¥ App ¥ >~ 08 13.2

&l Accelerate framework

" AxeptaDemoTests o

<

3 Accounts framewerk
ACIPCBTLIb.thd v
#54 AddressBook framework
¥ Fra # AddressBookUlframework
#5 AdSupport.framework
AppleConvergedTransport tbd
5 ARKit.framework
§ AssetsLibraryframework

Embed

AudioToolbox frameviork

8 AudioUnit.framework

AL i’
¥ Dev gﬂﬂ AVFoundation.framework

Add Oter.. [cancel EEHE

6. Check that the framework is present in the Build Phases as described in section 4.

7.4SDK Configuration

Once the SDK has been added, an initial configuration is required.

1. Inthe AppDelegate file of the project, initialize the configuration by passing the endPoint for
payments and the licenseKey to the SDK.
Optionally, it is possible to enable logs and print debug messages in console setting the
"enableDebug" parameter to "true" (it defaults to false):

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool {

Axepta.shared.configure (endPointUrl: "https://...", licenseKey: 19:0:0:0:0:0:0.C
AXXXKXXXKX-XKXKXXKXKX-XXXXXXX", enableDebug: true)
return true

}

2. Fordebug purposes, it is possible to print in console the current installedSDK version number
using

E N7

Import AxeptaSDKClient

Axepta.shared. showVersionNumber ()

3.

Drag the AXPCustomizations.xcassets folder into the project, always selecting the “Copy
items if needed” and “Create groups” options. The Asset Catalog contains some Color Sets,
used by the SDK for the graphic customizations and a logo, which will be used as the logo of
the navigation bar on the screens managed by the SDK:

88 < [B AxeptaDemo AxeptaDemo) [88] AXPCustomizations.xcassets axp-header-logo < > [H

axp-header-logo Image

8 axpButtonColor

axpDisabledButtonColor

axpLoaderBkgColor E v E

axplLoaderColor

Universal

axpButtonColor: is used to customize the color of the payment and back
buttons on the payment Widgets

axpDisabledButtonColor: is used to customize the color of the payment
button where it is not enabled

axpLoaderBkgColor: is used to customize the background color of theloader
shown by the SDK during the operations

axpLoaderColor: is used to customize the color of the loader shown by the
SDK during the operations

axp-header-logo: is used to customize the logo loaded by the navigation bar
managed by the SDK. The image provided can be used as a template for
formatting a custom image. If the logo is removed from the asset there will
be no logo on the navigation bar. N.B. The navigation bar only shows this
logo using the integration methods by Payment Context or a direct call,

setting the “present” parameter to true (as described in the next section).
If the “present” parameter is set to false, and the payment functions are
loaded from a UlViewController inside a UINavigationController, the
navigation bar used will be that of the application (and thus freely
customizable).

As mentioned in the introductory section, there are three different integration methods:

e Integration through the Payment Context: with this type of integration, the SDK will provide
a selector to choose the payment method for every product, and will managethe subsequent
payment phases autonomously;

e Integration through a Widget: some types of payment have a Widget embedded as anormal
view to which an external payment button can be linked, or the default buttoncan be used.

e Integration through a direct call: payments can be managed directly through a publicinterface
that starts the payment on a specific scheme.

This type of integration is used to display the list of payment methods enabled for everyproduct,
thus allowing the payment to be managed directly by SDK.

The Payment Context managed by the SDK can be linked to the tag on the object using the
createPaymentContext function of the Worldline class by means of a Singleton.

Example of the code:

import AxeptaSDKClient

Axepta.shared.createPaymentContext ("productIid”, countryCode: "IT”, present:
false)

The function accepts the following parameters in input:
e itemld: the ID of the payment, i.e. the output of the initPayment (see Par. Payment

Initialization)

e countryCode: the ISO of the countryCode for the payment

e present: a Boolean that enables the payment methods selector to be shown as modal(if set to
true) or through a show on UlINavigationController (if supported by the application, and
setting this parameter to false).

There are three types of widget, all of the UlView type, which can be instantiated andembedded in
any container UlView:

AXPPhoneNumberWidget, AXPBankSelectorWidget, AXPCreditCardWidget

A description of the characteristics and initialization methods of each of these widgets is provided
below. Using, for example, a “widgetContainer” UlView in which to embed the widgets, a maximum
height of 185px can be set on the container view with a low priority: inthis way, the widget will
automatically readapt according to the Mode set at the time of initialization (as will be described later
on):

View

Show Frame Rectangle e
[_ 20:C 40 o
X Y
< 335 88
Width Height
a o o Arrange Position View
| Layout Automatic a
Layout Margins Default ﬁ
— r,]l Praserve Superview Margins
‘ Follow Readable Width
" Safe Area Relative Margins
1 Safe Area Layout Guide
a] fu (=

‘IA Constraints

Horizontal
=) Align Center X to: Safe Area Edit

g Align Trailing 1

& - .
Eaua copstant: = k) 188 -

[, Mianteading! priority 250 =

Equa

Vecataat Multiplier

‘ertical

2] Height Equals: 188 Edit

The PaymentDelegate protocol, common to all widgets, shows three functions that can be used to
intercept the outcome of the transactions (any errors including “title” and “message”information, or
conclusion of the process), and requires the declaration of the paymentID variable, which will be used
by the widgets to make the payment:

WORLDLINE 7.

public protocol PaymentDelegate {
var paymentID: String! { get set }

func onPaymentFinished ()

func onPaymentError (title:String?, message:String?)
func onPaymentCanceled ()

}
Before any Widget can be initialized, the SDK must be imported:

| import AxeptaSDKClient

AXPCreditCardWidget
Can be used for payments made using a Credit Card. This Widget in particular can be configured in 3
different versions, according to the mode with which it is initialized:

o IWIND & 17:59 @ W 100% (s

..

.

Mode: .default Mode: .compact Mode: .inline

For this widget, the SDK offers three types of view; “default”, “compact” and “inline”, so as to satisfy
the layout needs of the developer:

o “default” mode uses a height of 185px;
o “compact” mode uses a height of 142px;

o “inline” mode uses a height of 84px.

Initialization:

var paymentWidget = AXPCreditCardWidget (viewMode: .defaultMode,
lang: "it",
borderRadiusButton: 2,
borderRadiusTextFields: 3,
delegate: self)

e viewMode: is of the Modality type, an enum shown by the SDK, which can be set to the
following values:

e _defaultMode

e .compactMode

e .inlineMode

e lang: defines the language (according to the 1ISO639-1 standards): IT, EN, FR. If the parameter
passed does not correspond to one of the languages managed by the widget, English will be
used as the default language;

e borderRadiusButton: rounds the borders of the payment button;

e borderRadiusTextField: rounds the input fields;

o delegate: the object compliant with the PaymentDelegate protocol.

Using the inline layout (which has no payment button embedded in the component), the
payNow(itemld: String) function can be activated directly, to manage the payment by customized
interaction:

func payNow (itemId: String)

The itemld is the ID of the payment, i.e. the output of the initPayment (see Par. Payment
Initialization), a required variable of the PaymentDelegate protocol.

WORLDLINE sW7

Example of the code:

import UIKit
import AxeptaSDKClient

class PaymentViewController: UIViewController ({

@IBOutlet weak var widgetContainer:UIView!
@IBOutlet weak var payButton: UIButton!

var paymentWidget : AXPPaymentWidget?
var itemToPay: Item?
var paymentID: String!

override func viewDidLoad () {
super.viewDidLoad ()

guard let itemToPay = itemToPay else { return }

payButton.addTarget (self, action: #selector (payBtnTapped(_:)), for:
.touchUpInside)

payButton.clipsToBounds = true

payButton.layer.cornerRadius = 4.0

payButton.isHidden = SDKSettingsManager.shared.sdkModality != .inlineMode

WORLDLINE sW7

paymentID = itemToPay.itemId

/** SDK Widget Initialization **/
paymentWidget = AXPCreditCardWidget (

viewMode : .defaultMode,

lang : itemToPay. language.lowercased(),
borderRadiusButton : 2,

borderRadiusTextFields : 3,

delegate : self)

paymentWidget!.attachTo (widgetContainer)
/************/

@IBAction func payBtnTapped(_ sender: Any) {
// Action associated with the external payment button in .inline mode
guard let itemToPay = itemToPay else { return }
self.paymentWidget! .payNow (itemId: itemToPay.itemId)

extension PaymentViewController: PaymentDelegate ({

// MARK: Payment Delegate

func onPaymentFinished () {
print (#function)
self.navigationController?.popViewController (animated: true)

func onPaymentError(title: String?, message: String?) {

print ("\ (#function) error:\ (String(describing: message)")
DispatchQueue.main.async { [weak self] in
guard let self = self else { return }

if let message = messaggio, let title = titolo {
let alert = UIAlertController.init (title: title, message: message,
preferredStyle: .alert)
alert.addAction (UIAlertAction.init (title: "OK", style: .default,
handler: { [weak self] (action) in
self?.navigationController?.popViewController (animated: true)

1))

self.present (alert, animated: true, completion: nil)

func onPaymentCanceled () {
print (#function)
self.navigationController?.popViewController (animated: true)

The last integration mode is the one that enables the use of the direct payment method fromthe
AXPPaymentManager class:

public func executeDirectPaymentWith (itemId: String,
circuit: Circuit,
language: String,
countryCode: String?,
present: Bool = true)

e jtemld: the ID of the payment, i.e. the output of the initPayment (see Par. Payment
Initialization);

e circuit: an enum of the Circuit type, which can be set to: .creditCard,

.bancomatPay, .satispay, .aliPay, .weChat, .myBank;1

e language: defines the language (according to the 1SO639-1 standards): IT, EN, FR. Ifthe
parameter passed does not correspond to any of the languages managed by the widget,
English will be used as the default language;

e countryCode: the country code of the product to be paid (mandatory in paymentson the Ali
Pay, We Chat, Apple Pay)? payment method. The default setting is “IT”;

e present: a Boolean, set by default to true, to determine whether the screen that includes the
graphic widgets is to appear as modal (if set to true) or as a show on UINavigationController
(if present in the application integrating the SDK, and if thevalue is set to false).

Using this method, the payment can be triggered directly by interaction with a button or from a
gesture.

Example of the code:
AXPPaymentManager.shared.executeDirectPaymentWith (itemId: paymentId,
circuit: .creditCard,
language: "IT”,
countryCode: "IT”)

If you decide to use the credit card payment without initializing the graphic widget (that is, through
the Payment Context or a direct call), the widget viewing method can be decided upon by passing the
parameter directly to the singleton in the Worldline class.

Example of a code:
| Axepta.shared.creditCardMode = .inlineMode

LIf alternative payment methods have to be implemented, contact Axepta for support.
2|If alternative payment methods have to be implemented, contact Axepta for support.

WORLDLINE 7.

8 In-App checkout (SDK Android)

This SDK installation guide allows easy payment execution and a series of pre-set screens tomeet
different graphic needs, with the possibility of creating custom elements and the directuse of payment
methods. The SDK naturally provides implementing developers the ability tocapture SUCCESS and
FAILURE events.

8.1 Minimum Requirements
To be able to integrate the SDK correctly, Android 6.0 (APl 23) or a later version is required. The SDK
has been made compatible with androidX, so the versions supported are APl 23 andlater.

8.2 Adding dependency for SDK

Follow the steps below to add dependencies for the SDK:

1. Take the file.arr of the SDK:

2. Onthe open project, enter Project view mode in Android Studio:
3. Locate the libs folder (within the app) and copy the file from the previous step into it:

4. It differs from one operating system to another, in the case of Mac OS X, open the
Project Structure panel using the File button:
File Edit View Navigate Code
New >
= Open...
[Profile or debug APK

Open Recent
Close Project

Link C++ Project with Gradle

- Project Structure...

5. Select Dependency, under Modules select app, then press the + button and select Jar
Dependency:

WORLDLINE 7.

® 0 Project Stru
Modules Deciared Depen

+ - —_

I <All Modules> 1 Library Dependency

% app {1 2 Jar Dependency
t-layout:1.1.3

.0.0

Dependencies

6. Select the item with the name of the SDK from the first drop-down menu. The second drop-

down menu should be left with the default item, implementation, then press the OK button:
i Add Jar/Aar Dependency

B Module 'app’

Step 1.

Provide a path to the library file or directory to add

rapper.jar

libs/payment.aar

7. A new item for the library has now appeared, as can be seen from the image below. To finish
correctly adding the dependency, press the APPLY button below and then press OK:

libs implementation

libs/payment.aar implementation

8. To verify that you have entered the dependency successfully, enter the build.gradle(Module:
App) file and check that the implementation has been added correctly.

Having added the dependency to the SDK, an initial configuration is necessary:

e Invoke the ApiService.setEndPointAndLicence() method, which requires two parameters:
o endpoint, the endpoint to be contacted to make the executive call to makethe payment.
Parameter type = String

©)

o

licence, the x-licence-api provided (of the In-App SDK Android) type.
Parameter type - String
enableDebug, enable logs and print debug messages in console (default isfalse)

e Invoke the ApiService.paymentConfiguration() method, this method requires input:

o

o

paymentld, the ID of the payment received from the init call made previously.
Parameter type - String
countryCode, I1SO code of the countryCode of the payment = String

e Fordebug purposes, it is possible to print in console the current installed SDK versionnumber
using the showVersionSdk function Utils.showVersionSDK()

The colors of buttons, backgrounds and radii of buttons or text fields can be personalized. To be able
to customize these parameters, you will have to enter the same keys used in the SDK containing the
desired value in the color.xml file (for the colours), dimen.xml (for the size), drawable folder (for the
images) of your project:

e Colours:

©)
@)

O O O O O O O

background_color: used to change the background colour of widgets
button_background_default_color: used to personalize the background colour of
the buttons

btn_color_enable: background colour of the button when it is enabled
btn_color_disable: background colour of the button disabled

background_loader: background colour of the screen of the loader
input_field_strokes_color: colour of the borders of the editable fields
input_field_background_color: background colour of the EditText
button_pay_text_color: colour of the payment button text

loader_color: colour of the progress bar of the loader screen

o item_selector_color: background colour of the selector item

e Size
o default_edit_text_radius: radius of editable field borders
o default_button_border_radius: radius of button borders

e Drawable:
o logo: logo loaded from the toolbar managed by the SDK. The logo will only be visible in the
PaymetSelectorActivity integration mode. If no logo is set, the navigation bar will appear blank

There are three types of SDK integration:

e Integration by PaymentSelectorActivity: in this case, the SELECTOR mode willbe
displayed, enabling the user to choose the type of payment and the subsequent
phases of the payment will be managed automatically by the SDK.

® Integration by FragmentPayment: when the type of circuit to be used to makethe
payment is passed, the View for the selected mode to which an external button can
be linked for the payment will be displayed or the default view canbe used.

e Integration bydirect calls: methods for starting payments directly on a specific scheme
have been shown

This type of integration enables the list of enabled payment methods for every product to be viewed.
Once the payment method has been selected, the subsequent phases of the payment will be
managed directly by SDK.

WORLDLINE W7

1\ "y

To be able to integrate this mode, an intent will have to be executed in
PaymentSelectorActivity

Java
Intent intent=new Intent(context,PaymentSelectorActivity.class)
startActivity(intent)

Kotlin
val intent = Intent(context, PaymentSelectorActivity::class.java)
startActivity(intent)

WORLDLINE W7

8.7 FragmentPayment Integration

8.7.1 Implementation in an Activity
The implementation of the elements for the effective use of this SDK requires a few stepsboth on
the Java side and on the xml resources (layout) side).

Here are the steps necessary for the correct implementation within an Activity:

1. Instantiate a ResultExecutePaymentCallback object, which will be our callback.

private FragmentPayment.ResultExecutePaymentCallback resultExecutePaymentCallback;

2. Create a method, such as initCallBackSdkPayment. Then override the methods needed to
capture the SUCCESS and FAILURE outcomes that will be generated by theSDK.

Java
private void initCallBackSdkPayment() {
resultExecutePaymentCallback = new FragmentPayment.ResultExecutePaymentCallback() {
@Override
public void onExecuteSuccess() {
Toast.makeText(getApplicationContext(), "Success", Toast.LENGTH_LONG).show();

1
@Override
public void onExecuteFailure() {
Toast.makeText(getApplicationContext(), "Failure", Toast.LENGTH_LONG).show();
}
L
}
Kotlin

val resultExecutePaymentCallback = object : ResultExecutePaymentCallback {
override fun onExecuteSuccess() {

}

override fun onExecuteFailure(reason: String?) {

}

WORLDLINE sW7.

3. Invoke the initCallBackSdkPayment method immediately after setContentView
within the onCreate activity.

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity_main);
initCallBackSdkPayment();

4. Create a FragmentPayment (a Fragment) object instance, which will process all the
information entered into it by the user and if positive, proceed with the payment, otherwise it will return
an error signal. Below are the elements that make up the FragmentPayment object constructor.

a. paymentType: accepted values [CREDIT_CARD - SATISPAY - BANCOMATPAY
- MY_BANK - WECHAT - ALIPAY]!. The payment method indicated will be
shown according to the value shown. Parameter type -> PaymentType

b. viewType, accepted values [DEFAULT - COMPACT - INLINE]. This will generatea
different view according to the value indicated. The INLINE view allows useof the
direct call integration mode, thus giving the possibility of using customcomponents.
Parameter type -> ViewType.

c. resultExecutePaymentCallback returns the callback of the executeCall() method
(defined in the Custom button — Payment section)

Java

final FragmentPayment = new FragmentPayment(
FragmentPayment.PaymentType.CREDIT_CARD,
ViewType.COMPACT,

resultExecutePaymentCallback);

! If alternative payments method have to be implemented, contact Axepta for support.

WORLDLINE 7.

Kotlin

val fragmentPayment = FragmentPayment(
FragmentPayment.PaymentType.CREDIT_CARD,
ViewType.COMPACT,

resultExecutePaymentCallback, buttonStateCallback

5. Add the Fragment: The following image shows a sequence of standard commands for adding
a Fragment within a layout

FragmentManager = getSupportFragmentManager();
FragmentTransaction = fragmentManager.beginTransaction();

fragmentTransaction.add(R.id.container,fragmentPayment).addToBackStack(null).commit();

6. in this case a Framelayout

<Framelayout android:id="@+id/container"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical|center_horizontal">

</Framelayout>

For implementation within a Fragment, all the explanations above are valid. It is best to implement
this by overriding the onViewCreated method and entering all of the instructionsindicated within the
latter. The only change to be made is on point “5” of section 2.12.7.1. The code you need to create a
childFragment to integrate Fragment (FragmentPayment) within your Fragment is indicated below:

FragmentTransaction transaction = getChildFragmentManager().beginTransaction();
transaction.replace(R.id.container, fragmentPayment).commit();

The possibility of including additional graphic elements, for example, a button that respectsall the Ul
and UX lines that are being followed in your project, has been left.
The appropriate method will have to be invoked according to the payment method:

e CREDIT_CARD: the executeCall() method will have to be invoked; it is a public methodthat can
be invoked using the FragmentPayment object. Below is an example image showing how to
implement an Actvity side button and how to create the respective onClickListener to allow
the method indicated above to be invoked. On the XML layout side, there will be a
personalized button below the Framelayout created previously:

Button customPayButton = findViewByld(R.id.custom_pay_button);
customPayButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
fragmentPayment.executeCall();

WORLDLINE 7.

8.9 Examples of the code

FragmentPayment integration

public class MainActivity extends AppCompatActivity {
private FragmentPayment.ResultExecutePaymentCallback resultExecutePaymentCallback;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
initCallBackSdkPayment();

final FragmentPayment fragmentPayment = new FragmentPayment(
FragmentPayment.PaymentType.CREDIT_CARD,
ViewType.COMPACT,

resultExecutePaymentCallback

);

FragmentManager fragmentManager = getSupportFragmentManager();
FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
fragmentTransaction.add(R.id.container,fragmentPayment).addToBackStack(null).commit()

ApiService.setEndPointAndLicence("endpoint","x-licence-key");

”on ”on

ApiService.paymentConfiguration(“paymentID”,”countryCode”,”amount”);

Button customPayButton = findViewByld(R.id.custom_pay_button);
customPayButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
fragmentPayment.executeCall();

1;
}
private void initCallBackSdkPayment() {
resultExecutePaymentCallback = new FragmentPayment.ResultExecutePaymentCallback() {
@Override
public void onExecuteSuccess() {
Toast.makeText(getApplicationContext(), "Success",
Toast.LENGTH_LONG).show();

}

WORLDLINE aW7

@Override
public void onExecuteFailure() {
Toast.makeText(getApplicationContext(), "Failure",

Toast.LENGTH_LONG).show();

!
PaymentSelectorActivity integration

public class MainActivity extends

AppCompatActivity {@Override
protected void onCreate(Bundle savedinstanceState) {

super.onCreate(savedinstanceState);
setContentView(R.layout.activity_main);

ApiService.setEndPointAndLicence("endpoint","x-licence-key");
ApiService.paymentConfiguration(“paymentliD”,”countryCode”,”amount”);

Intent intent=new
Intent(context,PaymentSelectorActivity.class)

startActivity(intent)

WORLDLINE W7,

8.10 Examples of Layouts

CreditCard

Default

Pl Chagpts

il

L P 1234 12054

AR cvy

o

Compact
134 1333 1334 1534 U
BAMTAA CWv &
i _}
Inline
1234 1 120 1334 e

MILEAA vy o

After payment execution, as indicated in the InitPayment call, the outcome of the transactionis
returned with two methods:

® Frontend: frontend outcome depends of the integration type

o Easy checkout: after processing the payment, Worldline performs a REDIRECT tothe
url specified by the merchant in redirect_successUrl (or in redirect_failureUrl if the
transaction has failed).

o Smart checkout and API checkout: the render of the outcome will trigger an event
on the web page with the iframe, which indicates the end of the transaction. The
event is triggered with a script that invokes the window.postMessage()method.

That is:
window.top.postMessage (‘axepta SUCCESS message’, ‘*');
if the transaction is concluded successfully,

orwindow.top.postMessage (‘axepta FAILURE message’, ‘*');
if the transaction fails.
This event can be intercepted by a listener on the web page. In any case, thedetails on the transaction
will only be on the backend.

o In-App checkout (Android) and In-App checkout (iOS): please see respective
paragraphs.

® Backend: Worldline makes a server to server call to the url specified by the merchant in
callback_url parameter of the initPayment call
An example of the parameters returned is shown below (format JSON):

{
"integration type": "WIZARD",
"integration name": "Easy",
"mid": "BNLP TEST ALIAS",
"paymentId":
"76b5806696£823837a030cbb2c708c6108ce79961b£f0d123519a055d75bdb6al",
"instrument": "CREDITCARD",
"operation type": "PAYMENT",
"amount": "0.01",
"currency": "EUR",
"language": "IT",
"transaction type": "PURCHASE",
"addresses": [],
"products": [],
"notification": {
"area code": "+39",
"name": ""
"email": "",
"smartphone": "+39 "

"additionals": [],

"callback url": "https://webhook.site/45cflcbd-0885-4845-980c-
9e750e104b01",

"transactionAt": "2020-11-10T12:03:09.409z",

"card brand desc": "Visa",

"service type desc": "Debit Card",

"product priority code": "",

"shopID": "JSfOppMWy7ZNvw943iBVRcXcHKsQFVwg",

"tid": "08000001",

"transaction status": "PG 000",

"payInstrToken": null,

"payCardToken": null,

"maskedPan": "411111******x1111",

"brand": "VISA",

"transactionID": "3087001610827263",

"card expiration": "1023",

"authCode": "125996",

"xid": "MDAzMTU2NzQ5MzYxMjkzNzY30TA="",

"transaction code": "PG 01010",

"description status": "TRANSAZIONE OK"

IMPORTANT:

e Verify is a server to server call that can be used ONLY AFTER the callback, as an additional
check of the status of the transaction.

e [fthe callback is not received, this means that the customer has decided not to pay or has not
managed to pay or, though less likely, that an error has occurred in processing the payment
and that, AT THE SAME TIME, this error has not been received on the callback. These two
cases can be managed with the merchant-side Verify, but it should be after a long period of
time (for example, an hour), in which, for example, the operation can be closed and the
purchase indicated as “failed”.

e it is available a feature that, by default, if callback is not acknowledged (i.e. 200 OK by the
merchant), then callback is resended again after 1 hour for a maximum of 24 times if a 200
OK is not received by Worldline. “1 hour” can be modified and “24 times” can be modified, if
needed, contacting ecommerce support.

e The system has a recurring job. This job analyses any payment in pending status andmanage
to cancel it, if needed. In this case, a callback is sent to the merchant endpointdefined for that
payment in order to notify that the payment is canceled. By default,the job is scheduled each
30 minutes and it takes payment older than 30 minutes, butthose values can be modified if
needed, contacting ecommerce support.

RLDLINE a7

This section describes the possible server to server calls that may be useful to the merchantafter
making the payment.

For a successful PURCHASE transaction, you can return an amount in order to return partor the entire
amount paid into your wallet.

The payment ID to be included in input is that of the transaction already performed and onwhich the
return is to be made.

ECOMMERCE(SERVER) BROWSER WORLDLINE

| |
| |
sTART H |

1: InitPayment (PURCHASE)

|
|
|
|
| |
| T >
| |

l‘. 2: Response (PaymentlD) 1
I I I
I I

I I

3: Execute |

| g

| I

4: Response (transaction|D)
¢ - - - - :Response (ansactionD) J

5: Credit (transactionID)
|
I

6: Response

e |[nitialize a PURCHASE type payment

e Perform an execute’ to make the payment and a transactioniD field will be returnedin the
response

!Itis intended in general that the payment be made using one of the integration methods provided by Worldline: API, Easy, Smart, In-App.

e Perform a Credit using the transactionID, to return a credit of a certain amount on apayment’
The specifications of the Return call for PURCHASE type transactions are shown below:

METHOD

POST

ENDPOINT

{{host server to server}}/api/vl/payments/credit

HEADERS

“Content-type”: application/json
“Authorization”: Bearer <-- AccessToken -->
“x-license-key": <-- API License Key -->

(BODY)
PARAMETERS

{

"paymentld": "< — payment ID -->",
"transactionID": "3079887950480832",
"amount": "2.36"

RESPONSE

"maskedPan": "411111******1111",

"brand": "VISA",

"authCode": "113973",

“card_expiration": "1023",

"mid": "a",

"amount": "10.01",

“currency": "EUR",

“tid": "08000001",

"paymentld": "<--PAYMENTID-->",
"transactionAt": "2019-11-29T15:56:22.5617",
"operation_type": "CREDIT",

"shopID": "hUiCdUtkvpNel9nM16v7NhtMXKfA4zx6",
"transaction_status": "PG_000",
"transaction_code": "01010",
"description_status": "TRANSACTION OK",
"transactionID": "3079905910425225",
"pendingAmount": "5455"

RESPONSE KO

llmidll: llall,

"amount": "10.01",

! A return (Credit) of a transaction charged previously (Confirm) can also be performed. For further details, see the relevant section. Note
that the amount to be returned must be consistent with the amount of the Purchaseor Confirm performed previously.

JRLDL

NE W7,

"currency": "EUR",

"tid": "08000001",

"paymentld": “<--PAYMENTID-->“,

"transactionAt": "2019-11-29T15:56:22.5617",
"operation_type": "CREDIT",

"shopID": "hUiCdUtkvpNel9nM16v7NhtMXKfA4zx6",
"transaction_status": "PG_001",
"transaction_code": "00001",

"description_status": "Generic error."

"code": 1118,

ERROR RESPONSE " v "
message": "The data are necessary.

WORLDLINE aW7.

10.1.1Example of Java Unirest

HttpResponse<String> response = Unirest.post("https://pay-test.axepta.it/api/vl/payments/credit")

.header("Content-Type", "application/json")

.header("x-license-key", "XXXXXXX-OERMYEO-MP683C5-9G0Q976")

.header("cache-control", "no-cache")

.body("{\n\t\"paymentld\":
\"c5121109fd86460de50¢c33526ab7cc07:20454330610d34d156698b12b070cef7be4b948219ffbf1a15cff30ab
32a94f93\",\n \"transactionID\": \"3079887950480832\" ,\n \"amount\": \"1.00\"\n}")

.asString();

10.1.2Example of PHP Http Request

<?php

Srequest = new HttpRequest();
Srequest->setUrl('https://pay-test.axepta.it/api/vl/payments/credit');
Srequest->setMethod(HTTP_METH_POST);

Srequest->setHeaders(array(
‘cache-control' => 'no-cache’,
'x-license-key' => "XXXXXXX-OERMYEO-MP683C5-9G0Q976',
'Content-Type' => 'application/json’

)

Srequest->setBody('{

"paymentld":
"c5121109fd86460de50c33526ab7cc07:20454330610d34d156698b12b070cef7be4b948219ffbflal5cff30ab3
2a94f93",

"transactionID": "3079887950480832",
"amount": "1.00"

1)

try {
Sresponse = Srequest->send();

echo Sresponse->getBody();
} catch (HttpException Sex) {
echo Sex;

WORLDLINE aW7.

10.1.3Example of Node Request

var request = require("request");

var options = { method: 'POST',

url: 'https://pay-test.axepta.it/api/vl/payments/credit’,

headers:

{'cache-control': 'no-cache’,

'x-license-key': "XXXXXXX-OERMYEO-MP683C5-9G0Q976',
'Content-Type': 'application/json' },

body:

{ paymentld:
'c5121109fd86460de50c33526ab7cc07:20454330610d34d156698b12b070cef7be4b948219ffbflal5cff30ab32
a94f99',
transactionlID: ‘3079887950480832’,

amount: '1.00'},
json: true };

request(options, function (error, response, body) {
if (error) throw new Error(error);

console.log(body);

N;

RLDLINE &7

For a successful AUTH transaction, you can return an amount in order to return part or the entire

amount paid into your wallet.

The payment ID to be entered in input is that of the transaction already performed and on which

the return is to be made.

ECOMMERCE(SERVER)

BROWSER

1: InitPayment (AUTH)

WORLDLINE

2: Response (PaymentlD)

g - - - - - 2 esponse {PaymentlD)_ _ . i
I I I
I I I
I I I
| 3: Execute |
i T g
I | I
| < 4: Response (transaction|D) i
I I I
I I I
I | I
| 5: Void {tralnsactionlD} |
I T g
I I
I I

e |nitialize an AUTH payment

e Perform an execute® to make the authorization and a transactionID field will bereturned in

the response

e Perform a Void using the transactioniD, to return a credit of a certain amount on analready

authorized payment’

!Itis intended in general that the payment be made using one of the integration methods provided by Worldline: API, Easy, Smart, In-App.
? Note that the amount to be returned must be consistent with the remaining preauthorized amount, forexample, if a partial

Confirm has been performed previously

6: Response

The specifications of the Return call for an AUTH transaction are shown below:

METHOD POST
ENDPOINT {{host server to server}}/api/vl/payments/void
“Content-type”: application/json
HEADERS “Authorization”: Bearer <-- AccessToken -->
“x-license-key": <-- APl License Key -->
{
(BODY) "paymentld": "< —Payment ID -->",
PARAMETERS "transactionID": "3079887950480832",
"amount": "2.36"
}
{
"maskedPan": "411111******1111",
"brand": "VISA",
"authCode": "727958",
"card_expiration": "1023",
"mid": "a",
"amount": "0.01",
"currency": "EUR",
RESPONSE "tid": "08000001",

"paymentld": “<--PAYMENTID-->“,
"transactionAt": "2019-11-29T16:01:45.686Z",
"operation_type": "VOID",

"shopID": "dQUoilwIBi3LRs4nrnbGelWjwfj4Zuhd",
"transaction_status": "PG_000",
"transaction_code": "01010",
"description_status": "TRANSACTION OK"

RESPONSE KO

"mid": "a",

"amount": "10.01",

“currency": "EUR",

“tid": "08000001",

"paymentld": "<-PAYMENTID->",
"transactionAt": "2019-11-29T16:01:45.686Z ",
"operation_type": "VOID",

"shopID": " dQUoilwlIBi3LRs4nrnbGelWjwfj4Zuhd ",
"transaction_status": "PG_001",
"transaction_code": "00001",
"description_status": "Generic error."

}

WORLDLINE &7,

ERROR RESPONSE

{

}

"code": 1118,
"message": "The data are necessary."

RLDLINE &7

For an AUTH transaction, you can confirm a specific amount in order to make the payment for a

part or the entire amount.

The payment ID to be entered in input is that of the transaction already performed and on which

the confirmation is to be made.

ECOMMERCE(SERVER)

BROWSER

1: InitPayment (AUTH)

WORLDLINE

2: Response (PaymentlD)

3: Execute
I
| I
4: Response (transaction|D)

AN I J|
I I I
I | I
| 5: Confirm (transaction|D) |
I | g
I I
I I

e |nitialize an AUTH payment

e Perform an execute® to make the authorization and a transactioniD field will be returned in

the response

e Perform a Confirm using the transactionID, to perform the credit of a certain amount on an

already authorized payment?

!Itis intended in general that the payment be made using one of the integration methods provided by Worldline: API, Easy, Smart, In-App.
? Note that the amount to be confirmed must be consistent with the remaining preauthorized amount, forexample, if a partial Void has

been performed previously.

6: Response

The specifications of the Confirm call for an AUTH transaction are shown below:

METHOD

POST

ENDPOINT

{{host server to server}}/api/vl/payments/confirm

HEADERS

“Content-type”: application/json
“Authorization”: Bearer <-- AccessToken -->
“x-license-key": <-- API License Key -->

(BODY)
PARAMETERS

{
"paymentld": "< — payment ID -->",
"transactionID": "3079887950480832",
"amount": "2.36"

RESPONSE

"maskedPan": "411111******1111",

"brand": "VISA",

"authCode": "727958",

"card_expiration": "1023",

"mid": "a",

"amount": "1.01",

"currency": "EUR",

"tid": "08000001",

"paymentld": “<--PAYMENTID-->“,
"transactionAt": "2019-11-29T16:03:36.279Z",
"operation_type": "CONFIRM",

"shopID": "dQUoilwIBi3LRs4nrnbGelWjwfj4Zuhd",
"transaction_status": "PG_000",
"transaction_code": "01010",
"description_status": "TRANSACTION OK",
"transactionID": "3079905990598769",
"pendingAmount": "8357"

RESPONSE KO

"mid": "a",

"amount": "10.01",

"currency": "EUR",

"tid": "08000001",

"paymentld": "<-PAYMENTID->",

"transactionAt": "2019-11-29T16:03:36.279Z",
"operation_type": " CONFIRM ",

"shopID": " dQUoilwIBi3LRs4nrnbGelWjwfj4Zuhd"

"transaction_status": "PG_001",

’

"transaction_code": "00001",
"description_status": "Generic error.'

"code": 1118,

ERROR RESPONSE " v "
message": "The data are necessary.

IMPORTANT: a return (Credit) of a previously charged transaction (Confirm) can also be made, in fact,
the latter is as though it has become a Purchase. In this case, note must be taken of the transactionID
returned by the Confirm and used for the Credit. Example:

First transaction (Auth):
e output
o TransactionlD=aaa
Confirm of the Auth:

e Input
o TransactionlD=aaa
e OQOutput

o TransactionID=bbb
Credit of the Confirm:
e |nput
o TransactionlD=bbb

It is possible to partly confirm amount, and void the residual, using “voidEnabled” attribute set to
true.

METHOD POST

ENDPOINT {{host server to server}}/api/vl/payments/confirm

“Content-type”: application/json

HEADERS “Authorization”: Bearer <-- AccessToken -->
“x-license-key": <-- API License Key -->
(BODY) {

PARAMETERS
VOID

"paymentld": "< — payment ID -->",
"transactionID": "3079887950480832",
"amount": "2.36",

"voidEnabled": true

RESPONSE
VOID

"maskedPan": "411111******1111",

"brand": "VISA",

"authCode": "727958",

“card_expiration": "1023",

"mid": "a",

"amount": "1.01",

"currency": "EUR",

“tid": "08000001",

"paymentld": “<--PAYMENTID-->“,
"transactionAt": "2019-11-29T16:03:36.279Z",
"operation_type": "CONFIRM",

“shopID": "dQUoilwIBi3LRs4nrnbGelWjwfj4Zuhd",
"transaction_status": "PG_000",
"transaction_code": "PG_01010",
"description_status": "TRANSACTION OK",
"transactionID": "3079905990598769",
"voidedAmount ": "8357"

RESPONSE KO

"mid": "a",

"amount": "10.01",

"currency": "EUR",

"tid": "08000001",

"paymentld": "<-PAYMENTID->",
"transactionAt": "2019-11-29T16:03:36.2797",
"operation_type": "CONFIRM",

"shopID": " dQUoilwIBi3LRs4nrnbGelWjwfj4Zuhd",
"transaction_status": "PG_001",
"transaction_code": "PG_00001",
"description_status": "Generic error."

ERROR RESPONSE

"code": 1118,
"message": "The data are necessary."

Where voidedAmount is the amount of the void operation, expressed in decimal.

JRLDLINE sW7.

In Server-To-Server mode, this method is used to verify the status of a payment. The outcome of the
transaction is indicated in the callback (as explained in previous sections), Verify is only to be used
in some very special cases.

The Verify function requires the payment ID (i.e. PaymentID) to be included in the parameters of the
endpoint.

ECOMMERCE(SERVER) BROWSER WORLDLINE

I
I
START : |

1: InitPayment

|
I
I
I
| |
| i >
| |

[
I‘. 2: Response (PaymentlD) 1
I | I
I | I
I | I
I 3: Execute I
i T P
I | I
lg-------_- 4:Response = __ J
I | I
| I

| I

5: Verify |

T >

| I

6: Response |

e |nitialize a payment
e Perform an execute® to make the payment
e Perform a Verify, which will respond with the status of the payment.

!Itis intended in general that the payment be made using one of the integration methods provided by Worldline:API, Easy, Smart, In-App.

The specifications of the payment verification call are shown below:

METHOD GET
ENDPOINT {{host}}/api/vl/payments/verify/{{PaymentID}}
HEADERS “Content-type”: application/json

“Authorization”: Bearer <-- AccessToken -->
“x-license-key": <-- API License Key -->

RESPONSE {

"maskedPan": "455777******3335"

"brand": "VISA",

"authCode": "317676",

"card_expiration": "1023",

"mid": "012",

"currency": "EUR",

"tid": "08000001",

"paymentld":
"a27cab5d4ee424e2086c57d647fef12429af2f57c0943a082519a055d75bdb6al",

"transactionAt": "2020-02-13T12:44:16.315Z",

"operation_type": "VERIFY",

"shopID": "1jEyAMdH9hdj2jiAMCHxYysNOoATuWOI",

"transaction_status": "PG_000",

"transaction_code": "01010",

"description_status": "TRANSACTION OK",

"transactionlID": "3077722880769169"

RESPONSE KO {
"mid": "a",

"amount": "10.01",

"currency": "EUR",

"tid": "08000001",

"paymentld": "<-PAYMENTID->",

"transactionAt": "2020-02-13T12:44:16.315Z",
"operation_type": " VERIFY",

"shopID": " 1jJEyAMdH9hdj2jiAMCHxYysNOoATuWOI",
"transaction_status": "PG_001",

"transaction_code": "00001",

"description_status": "Generic error."

ERROR {
RESPONSE "code": 1118,
"message": "The data are necessary."

WORLDLINE aW7.

10.6 Making one-click payments

One-click payments is an optional service that it could be activated on request. This service allows to
store card data and use them for successive payments (without insert them again in the form).
The service consists of three phases:

1. Configuration
2. Card tokenization
3. Payment using token

10.6.1Phase 1 - Configuration

Worldline will activate the tokenization feature on merchant request.Merchant has to decide if
wants:

e Explicit tokenization (only for Easy, Smart, In-app checkouts): in this scenario, it is thecard
holder that explicitly checks the corresponding checkbox in order to get the cardtokenized for

Salva | dati di pagamentc per i prossimi acquisti

Cliccando sul tasto Paga dichiarl dlaver preso visicne
dellTnformativa sulla privacy

future payments.

1234 1234 1234 1234 MM/AA Cw

[_] Salva i dati di pagamento per i prossimi acquisti.

e Implicit tokenization: in this scenario, the card tokenization it is totally choice by the
merchant. The card holder could be advised by a message of the merchant in the ecommerce
page or by a message in Axepta payment form (this message is configured by Axepta following
merchant requirement). Implicit tokenization is also the only possible case for APl Checkout.

LDLINE aW7.

Your card would be stored for future payments

Cliccando sul tasto Paga dichiari di aver preso visione
dell'informativa sulla privacy

1234 1234 1234 1234 MM/AA CwW

Your card would be stored for future payments

There are some parameters of the initPayment method, needed necessary to understand regarding
tokenization:

e “tokenize” is a boolen (true/false) parameter. It is the “consensus” from card holderin order
to tokenize the card. The usage of this parameter is the following:

o tokenize=true in input of input of the initPayment if you are configured as
implicit tokenization (this is valid for all types of checkouts)

o No need to use tokenize parameter in case of explicit tokenization, because Phey will
take the card holder’s consensus from the flag in the from (this is valid Easy, Smart
or In-app checkouts, in fact for the APl checkout the explicittokenization does not
have sense, because card holder gives the consensus always on the merchant
website)

e “payinstrToken” is the name of the user wallet and it is also the ID connecting successive
transactions. For example, it could be the customer ID on merchant side or customer email.
It is in input of the initPayment and in output of the payment (i.e.execute and/or callback). It
could be used in input for the first transaction, otherwise it would be randomly generated
by Worldline. For successive transactions, it must beused in input on initPayment, otherwise
first and successive transactions would not be connected each other’s. In successive
transactions, it allows to show stored cards of the card holder/user.

e “payCardToken” is the card token. It is in input of the initPayment and in output of the
payment (i.e. execute and/or callback). If the transaction is a “first transaction”, then
payCardToken would be an output parameter generated by Axepta. If you are submitting a
successive transaction in the “one-click payments”, then you can optionally use
payCardToken as an input parameter. If you do, you are forcing the system to pay with that
tokenized card instead of let the cardholder to choose.

e “txindicatorType” is the type of tokenized transaction. It is an input of initPayment.
In the case of a first transaction txIndicatorType would not be specified. In the case of a successive
transaction of type “one-click payments”, then txIndicatorType=UNSCHEDULED.

Following, there is an example of the initPayment of a first transaction (implicit tokenizationcase):

METHOD POST

ENDPOINT {{host server to server}}/api/vl/payment/initPayment

“Content-type”: application/json
HEADERS “Authorization”: Bearer <-- AccessToken -->
“X-license-key": <-- API License Key -->

(BODY) "transaction_type":
PARAMETERS "PURCHASE",
"transaction_timeout": "30000",
"tokenize": true,
"paylnstrToken": "test@test.it",
"shopID": "shoplDproval2345",
"currency": "EUR",

"language": "IT",

"amount": "84.58",

}

{
"code": 200,

RESPONSE "message": "SUCCESSFULLY",
"paymentID": <-- Payment ID -->

}

mailto:test@test.it

JRLDL

NE W7,

Then, the card holder would execute the payment. This action could be done in different ways,
it depends on which type of checkout is used by the merchant (Easy, Smart, etc)".

In addition, if implicit tokenization is disabled, it is up to the card holder the choice totokenize
the card or not.

If the transaction:

e s successfully, then the card is tokenized and VERIFIED. In this case, the user couldmake
one-click payments without insert card data again.

LI you are using API Checkout, then you must specify “tokenize=true” in the execute method.

e s failed, then the card would be temporary tokenized as PENDING. In this case, merchant
would receive payinstrToken but the user needs to insert again card data for future payments.
In this case merchant will not receive payCardToken.

Following, there is an example of success transaction (tokenized card), where payCardToken is randomly
generated:

RESPONSE "mid": "merchantID",

"instrument": "CREDITCARD",

"operation_type": "PAYMENT",

"isHTML": false,

"transactionAt": "2019-11-29T15:17:19.373Z",

"tid": "08000001",

"shopID": "AfghuojN7LCJw6UstZMVoPwo2QGNX8N7",
"transaction_status": "PG_000",

"token": "nloSObPgZq8F27wcH4a5LNoOd2XVM55v",
"maskedPan": "411111******1111",

"brand": "VISA",

"transactionID": "3079905680585024",
"paylinstrToken": "test@test.it", "payCardToken":
"6UstZMVo6UstZPwo2QGNX","authCode":
"288380",

"xid": "MDAzMzMzODI4MzMxMjlzOTU2Nzc=",
"transaction_code": "01010", "description_status":
"TRANSAZIONE OK"

In case of explicit tokenization, if the end user did not accept to save card data, then the output of
the callback would contain "payCardToken": null

Assuming the first payment and tokenizing are successfully, then the merchant could initiate a “one-
click” payment. In order to do that, merchant has to call initPayment method with:
e paylnstrToken of the user
e payCardToken, optionally if you want to force the payment with a tokenized card of the user
instead to let the user choose which card on Axepta form
e txIndicatorType=UNSCHEDULED

mailto:test@test.it
mailto:test@test.it

METHOD POS
ENDPOINT {{host server to server}}/api/vl/payment/initPayment
“Content-type”: application/json
HEADERS “Authorization”: Bearer <-- AccessToken -->
“X-license-key”: <-- API License Key -->
{
(BODY) PARAMETERS "transaction_type": "PURCHASE",
"transaction_timeout": "30000",
"paylnstrToken": "test@test.it",
"payCardToken": "6UstZMVo6UstZPwo2QGNX",
"txIndicatorType": "UNSCHEDULED",
"shopID": "shoplDproval2345",
"currency": "EUR",
"language": "IT",
"amount": "84.58",
}
{
"code": 200,
RESPONSE "message": "SUCCESSFULLY",
"paymentID": <-- Payment ID -->
}

Then, the card holder would execute the payment. This action could be done in differentways, it
depends on which type of checkout is used by the merchant (Easy, Smart, etc)®.

1 If you are using APl Checkout, then you must specify paylnstrToken and payCardToken in the execute
method. See Cap. APl checkout

mailto:test@test.it
mailto:test@test.it

Recurring payments is an optional service that it could be activated on request. This service allows to
store card data and use them for successive payments initiated by the merchant in certain period of
times (for example a membership subscription each month).

In particular, here we describe the case in which the merchant wants to schedule the transactions.

Before to read this paragraph, you need to read carefully the Par. “Making one-click payments” in
order to understand the tokenization topic.

The service consists of three phases:
1. Configuration
2. Card tokenization

3. Payment using token

Please read respective paragraph of Par. “Making one-click payments”.

Please read respective paragraph of Par. “Making one-click payments”. There is not anydifference.

Assuming the first payment and tokenizing are successfully, then the merchant could initiate a
“recurring payment”. In order to do that, merchant has to call initPayment method with:
e paylnstrToken of the user
e payCardToken, optionally if you want to force the payment with a tokenized card of the user
instead to let the user choose which card on Axepta form
e txIndicatorType=RECURRENT

METHOD POST

ENDPOINT {{host server to server}}/api/vl/payment/initPayment

“Content-type”: application/json
“Authorization”: Bearer <-- AccessToken -->
“X-license-key": <-- API License Key -->

HEADERS

(BODY) PARAMETERS "transaction_type": "PURCHASE",

"transaction_timeout": "30000",
"paylinstrToken": "test@test.it",
"payCardToken": "6UstZMVo6UstZPwo2QGNX",
"txIndicatorType": "RECURRENT",

"shopID": "shoplDproval2345",
"currency": "EUR",

"language": "IT",
"amount": "84.58",

"code": 200,

"message": "SUCCESSFULLY",
"paymentID": <-- Payment ID -->

RESPONSE

Then, the merchant would execute the payment. This action must be done with the API callcalled
execute.

mailto:test@test.it
mailto:test@test.it

WORLDLINE aW7.

10.8 Deleting a tokenized card

There are different ways to delete a tokenized card:

1. By the card holder. Merchant makes an initPayment specifying paylnstrToken parameter.
Then, merchant calls a payment form (either Easy, Smart or In-appcheckout) and shows it to
the cardholder. If cardholder has previously tokenized one or more cards, then he will view a
form like this

E possibile pagare utilizzando queste carte, poiche hai
precedentemente salvato i tuoi dati di pagamento:

Cliccando sul tasto Paga dichiari di aver preso visione
dell'informativa sulla privacy

Aggiungi o utilizza altra carta

In this case, cardholder can delete the tokenized card(s) using the corresponding button (X)

2. By the merchant. Merchant can use a server to server method in order to delete a tokenized
card on behalf of the cardholder. Then, Merchant is responsible of deletinga tokenized card.
The specifications of the call are shown below:

METHOD DELETE

ENDPOINT {{host}}/api/v1/payments/card/ < paylnstrToken—> /< payCardToken—>

“Content-type”: application/json

HEADERS “Authorization”: Bearer <-- AccessToken -->
“x-license-key": <-- licenza d’uso -->
{

RESPONSE "code": "200"

}

WORLDLINE &7,

11 Error codes

Call responses for status 200, i.e. those which were successful, were described previously.For error
codes, see the document:
“WORLDLINE_ListaCodiciEsitoTransazione”.

WORLDLINE &7,

12 Testing environment information

General information for the test environment is provided below. Specific information for the test
merchant is communicated separately by Worldline.

Reference HOST:

Checkout Testing

API https://pay-test.axepta.it
Easy https://pay-test.axepta.it/sdk
Smart https://pay-test.axepta.it/sdk

In-App (SDK iOS)
In-App (SDK Android)

https://pay-test.axepta.it
https://pay-test.axepta.it

The cards used for the tests are indicated below.
N.B. Where specified, the correct expiry date and/or CVV code must be indicated otherwisethe
transaction will fail.

Scheme Enrstatus Authstatus Authorization

outcome

4557773333333335 Visa - - Y Y OK
4557772222222229 Visa - - Y OK
4111111111111111 Visa 10/2023 | - N - OK
4555000000000001 Visa - - N - OK
4111111112225555 Visa - - N - OK
4011514444441116 VisaElectron - - N - OK
4011519992222222 VisaElectron - - N - OK
4005000000000007 VisaDebit 10/2023 | - N - OK
4005004455555556 VisaDebit - - N - OK
5430132222222226 Mastercard - - N - OK
5893535544444429 Mastercard - - N - OK
5790640100000005 Mastercard - - N - OK
5430131234567891 Mastercard - - Y N KO
5548535889622125 Mastercard - - N - OK
5401172222222227 Mastercard - - Y Y OK
5430132222222226 Mastercard - - N - OK
5548536000000126 Mastercard - - Y Y OK
5264921111111115 MastercardDebit | - 555 | N - OK
5545910000000019 MastercardDebit | - - Y N KO
5020639451965933 Maestro - - Y Y OK
5893535596092423 Maestro - - Y A KO

WORLDLINE &7,

where:

® enrStatus represents the status of registration of the card to the 3D Secure service
Y — Authentication available;

N — Holder not registered with the service;

U — Authentication not possible;

E — Error.

VVVY

® AuthStatus represents the authorization outcome of the card with the 3D Secureservice
Y — Authenticated;

A — Attempted authentication;

N — Holder not authenticated;

U — Authentication not possible.

VVVY

The testing environment includes some test cases through which the behaviour of the solution can
be simulated when some conditions that would invalidate the transaction occur.They respond to the
following Pan / Amount combinations:

Outcome Description
101,00 any PG_01045 Authorization denied
102,00 any PG_01058 Incorrect merchant code
103,00 any PG_01057 Invalid card
4557773333333335 -
5401172222222227 104,00 any PG_01086 Holder.not enabled for this
4557772222222229 operation
5548536000000126 105,00 any PG_01089 Frequency limit exceeded
5020639451965933 106,00 any PG_01180 Stolen card
107,00 any PG_01038 Format error
108,00 any PG_01080 Contact issuer
109,00 any PG_01078 Suspected fraud
5430132222222226 103,00 any PG_01060 Insufficient funds
4111111111111111 104,00 any PG_01086 Holder not enabled for this
4011519992222222 operation
4005000000000007 105,00 any PG_01089 Frequency limit exceeded
5264921111111115
5401172222222227 > 200 any PG_01060 Insufficient funds
5264921111111115
4111111111111111 Any different Any PG_01018 Card expired
4005000000000007 from above differe
nt
from
10/23

WORLDLINE aW7.

12.1 Testing 3DS 2.x

If merchant is enabled to 3DS 2.x, then it needed to make some specific tests. In particular you can
follow the below table in order to test some 3DS 2.x scenarios.

Scheme Expiry transStatus Authorization outcome
401200103627555 VISA 10/23 any UNABLE
6
525599999999999 MC 10/23 any UNABLE
2
RISK BASED
VISA 10/23
4012001(;3844333 / any AUTHENTICATION
(FRICTIONLESS)
RISK BASED
MC 10/23 an
5453010(6)0007386 / y AUTHENTICATION
(FRICTIONLESS)
RISK BASED
MC 10/23 an
5256103;7009653 / y AUTHENTICATION
(FRICTIONLESS)
RISK BASED
VISA 10/23
4824983;7009650 / any AUTHENTICATION
(FRICTIONLESS)
401200103685333 VISA 10/23 any REFUSED BY THE PAYMENT
7 GATEWAY
545301000007368 MC 10/23 any REFUSED BY THE PAYMENT
4 GATEWAY
FULL 3DSecure
401200103714111 VISA 10/23 any (CHALLENGE)
2 Fill with 111111
FULL 3DSecure
545301000007320 MC 10/23 any (CHALLENGE)
5 Fill with 111111

WORLDLINE &7,

13 How to move to Production environment

The following activities must be carried out starting from the time at which Worldline and the
merchant agreed on the release to Production:

e Change all the endpoints from https://pay-test.axepta.it to https://pay.axepta.it, i.e.follow
the information given in the table below

Checkout Testing Production

API https://pay-test.axepta.it https://pay.axepta.it
Easy https://pay-test.axepta.it/sdk | https://pay.axepta.it/sdk
Smart https://pay-test.axepta.it/sdk | https://pay.axepta.it/sdk
In-App (SDK iOS) https://pay-test.axepta.it https://pay.axepta.it
In-App (SDK Android) https://pay-test.axepta.it https://pay.axepta.it

e Generate another Access Token, to be used in the Production environment

o By accessing the URL https://pay.axepta.it/access from a browser session in
“incognito mode”

o Using the Username and Password provided by Worldline

o Use this new Access Token for the Production environment

e Replace all the License Keys (i.e. the Server to Server key and each of the special keysfor the
single integration method chosen).

https://pay-test.axepta.it/
https://pay.axepta.it/
https://pay.axepta.it/access

WORLDLINE aW7.

14 Merchant-side PCI data security information
The PCI DSS standard defines the compliance requirements that merchants must fulfil. The table
below lists these requirements (Self-Assessment Questionnaire SAQ and Report on Compliance RoC)
for each type of technical integration solution that the merchant decides to implement.

Product

Technical
solution

Description

Compliance
(<6,000,000
transactions/year)

Compliance
(> 6,000,000
transactions/year)

Easy Redirect The user is redirected to the | SAQA RoC
Checkout SDK AXEPTA payment page and the

card data can be entered on the

same page
Smart JS SDK The card data entry form is | SAQA-EP RoCA-EP
Checkout presented by the merchant and

the data is transmitted directly to

the payment gateway without

interaction with the merchant’s

server
In-App Mobile SDK | SDK for the integration of payment | SAQA RoC"
Checkout services on mobile applications
API Server to | Card data is entered on the SAQD RoC
Checkout server merchant page and the card data is

managed by the merchant’s server

Where, in principle, the criteria are as follows:

® SAQA/RoC* =the entire payment page is managed by Worldline

® SAQ A-EP / RoC*® = The merchant's site does not historicize, process or transmit card data,
but controls how the data is collected

® SAQ D/ RoC =the merchant's site historicizes, processes or transmits card data

	1 DOCUMENT VERSIONS
	1 Introduction
	1.1 Checkout solutions
	1.2 Payment instruments
	1.3 Additional services
	1.3.1 Saving payment data
	1.3.2 Payment notifications
	1.3.3 Customer notifications
	1.3.4 Easy Checkout personalization
	1.3.5 Easy Checkout optional forms

	1.4 Support information
	2 Initializing a payment
	2.1 Payment Initialization (initPayment)
	2.1.1 Example of Java Unirest integration
	2.1.2 Example of PHP http Request integration
	2.1.3 Example of Node Request integration

	3 Types of integration
	4 API checkout
	4.1 Payment execution (execute)
	4.1.1 Example of Java Unirest integration
	4.1.2 Example of PHP Http Request integration
	4.1.3 Example of Node Request integration

	4.2 Payment execution with 3DS
	window.top.postMessage(‘axepta_ SUCCESS _message’, ‘*’);

	4.3 Direct Payment (directPayment)
	5 Easy checkout
	6 Smart checkout
	6.1 Smart layout management
	axeptaClient.preparePayment(‘←-PaymentID-→, ‘←- Layout -→’);
	axeptaClient.preparePayment('←- PaymentID -->', 'compact');
	axeptaClient.preparePayment('←- PaymentID -->', 'inline');
	axeptaClient.preparePayment('←- PaymentID -->', 'buttonless');

	6.2 Smart layout personalization
	7 In-App checkout (SDK iOS)
	7.2 Introduction
	7.3 Adding SDK to the project
	7.4 SDK Configuration
	7.5 SDK implementation
	7.5.1 Payment Context Integration
	7.5.2 Widget integration
	7.5.3 Integration by direct call on a specific payment method
	7.5.4 Setting the Credit Card view in direct payments

	8 In-App checkout (SDK Android)
	8.1 Minimum Requirements
	8.2 Adding dependency for SDK
	8.3 SDK configuration
	8.4 Graphic personalization
	8.5 SDK Integration
	8.6 PaymentSelectorActivity Integration
	8.7 FragmentPayment Integration
	8.7.1 Implementation in an Activity
	8.7.2 Implementation in a Fragment

	8.8 Direct call integration
	8.9 Examples of the code
	8.10 Examples of Layouts
	9 Payment outcomes
	10 After the payment
	10.1 Credit
	10.2 Void
	10.3 Confirm
	10.4 Confirm with automatic void of the residual
	10.5 Verifying a Transaction (verify)
	10.6 Making one-click payments
	10.6.1 Phase 1 - Configuration
	10.6.2 Phase 2 - Card tokenization
	10.6.3 Phase 3 - Payment using token

	10.7 Recurring payments (scheduled by the merchant)
	10.7.1 Phase 1 - Configuration
	10.7.2 Phase 2 - Card tokenization
	10.7.3 Phase 3 - Payment using token

	10.8 Deleting a tokenized card
	11 Error codes
	12 Testing environment information
	12.1 Testing 3DS 2.x
	13 How to move to Production environment
	14 Merchant-side PCI data security information

