
 

 

 

 

 

 

WORLDLINE 

pHey Integration Guide 
 

 

v. 1.3.4 
 

 

 

 
 



 

 

1 DOCUMENT VERSIONS 
Version Description of changes 
1.0.0 First issue 

1.0.1 Document outline revision 

1.0.2 IT content revision 

1.0.3 Business content revision 

1.0.6 IT content revision 

1.0.7 Document outline revision 

1.0.8 Insertion of references to sections 

1.0.9 Graphic revision 

1.0.10 IT content revision (strings limited to 2048 bits, supported languages, removed 

the TID in initPayment) 

1.0.11 IT content revision (body and response to server-to-server calls updated) 

1.1.0 Added Android SDK and iOS SDK guides 
Added "Smart layout customization” section 
Error code revision 
Formatting revision 

1.1.1 Typos in examples 

1.1.2 Specified which licenses to use in the various Requests and redacted 

notification email 

1.1.3 Detailed description on merchant-side PCI DSS 
Fixed typos on host 

1.1.4 Typo in Android SDK in the "Implementation in an Activity" section, letter "f".  
initPayment, removed obligation of the redirect_successUrl, redirect_failureUrl and 
callback_url parameters 

1.1.5 Smart integration, transaction outcome management 

1.1.6 redirect_successUrl and redirect_failureUrl were changed from POST-type calls to 
REDIRECT. 
Easy integration, transaction outcome management 

1.1.7 Fixed test PANs 

1.1.8 Specified that the Access Token must be sent in Bearer mode 

Verifying a Transaction (verify) section inserted 

1.1.9 Types corrected in “Smart integration” example 

1.2.0 Document outline revision 
Tokenize function added to various Sections. 
Complete revision of In-App integrations (iOS and Android) 
Specification on Access Tokens 
InitPayment, description of amount when card is verified  InitPayment, 
enumerative added to address type “Making payments with 3DS” section. 
Example modified 
Easy integration: compatible browsers, clarifications on Verify 
Smart integration: compatible browsers, window.postMessage(), 
clarifications on Verify 



 

 

“Information for test environment” section, enrStatus e authStatus 

“Information for test environment” section, test cases New “Information for release 

to Production” section 
1.2.1 Verify, PaymentID in input section 

1.2.2 References to APMs removed 
Notes added for the special case of the Credit of Confirm 

Added Par. ”Making one-click payments” 

1.3.0 Par. “Support information”, new email transaction_type 
clarification in initPayment shopID clarification in initPayment 

logo parameter substituted with image parameter in initPayment 
Par. “Smart Layout Management”, new layout “buttonless” 
SDK iOS, added Xcode functional requirements 
SDK Android, removed amount from ApiService.paymentConfiguration() 
Par. ”Making one-click payments”, complete review 
Par. “Deleting a tokenized card”, added paragraph 

Par. “Information for test environment”, added two test cases Par. 

“Testing 3DS 2.x”, added paragraph 

1.3.1 Par. “Recurring payments”, added paragraph 

1.3.2 Par. “Recurring payments”, modified paragraph 

  1.3.3                Par. “Payment Initialization (initPayment)”, removed       payInstrToken and 

payCardToken in the examples 
Par. “Credit”, removed payInstrToken and payCardToken in the examples 
Par. “Void”, removed payInstrToken and payCardToken in the examples 
Par. “Confirm”, removed payInstrToken and payCardToken in the examples 
Par. “Payment Initialization (initPayment)”, added type values SPEDIZIONE and 
FATTURAZIONE 
Par. “Payment execution (execute)”, card_brand is not mandatory 
Par. “Direct payment (directPayment)”, card_brand is not conditional 
Par. “Payment Initialization (initPayment)”, job to cancel payments. Par. 
“Making one-click payments”, case of payCardToken null 

Par. “In-App checkout (SDK iOS)”, itemId value must be the PaymentID on the 

initPayment 

1.3.4             Par. “Payment outcomes”, added paragraph 
Par. “Easy checkout”, payment result moved to new 
Par. “Payment outcomes” 
Par. “Smart checkout”, payment result moved to new 
Par. “Payment outcomes” 
More paragraphs, callback_url must be in HTTPS 
More paragraphs, redirect_successUrl must be in HTTPS More paragraphs, 
redirect_failureUrl must be in HTTPS 
Par. “In-App checkout (SDK iOS)”, modified functional requirements Par. “In-App 
checkout (SDK iOS)”, modified SDK configuration 
Par. “In-App checkout (SDK Android)”, modified SDK configuration 
Par. “In-App checkout (SDK Android)”, modified example in 



 

PaymentSelectorActivity Integration 
Par. “Confirm with automatic void of the residual”, added paragraph 



 

 

CONTENTS 
1 Introduction ................................................................................................................................... 8 

1.1 Checkout solutions ................................................................................................................. 8 

1.2 Payment instruments ............................................................................................................. 8 

1.3 Additional services ................................................................................................................. 8 

1.3.1 Saving payment data ...................................................................................................... 9 

1.3.2 Payment notifications .................................................................................................... 9 

1.3.3 Customer notifications ................................................................................................... 9 

1.3.4 Easy Checkout personalization .................................................................................... 10 

1.3.5 Easy Checkout optional forms...................................................................................... 10 

1.4 Support information............................................................................................................. 11 

2 Initializing a payment ................................................................................................................... 12 

2.1 Payment Initialization (initPayment) ................................................................................... 12 

2.1.1 Example of Java Unirest integration ............................................................................ 17 

2.1.2 Example of PHP http Request integration ................................................................... 18 

2.1.3 Example of Node Request integration ......................................................................... 20 

3 Types of integration ..................................................................................................................... 22 

4 API checkout ................................................................................................................................. 23 

4.1 Payment execution (execute) .............................................................................................. 23 

4.1.1 Example of Java Unirest integration ............................................................................ 27 

4.1.2 Example of PHP Http Request integration ................................................................... 27 

4.1.3 Example of Node Request integration ......................................................................... 28 

4.2 Payment execution with 3DS ............................................................................................... 29 

4.3 Direct Payment (directPayment) ......................................................................................... 32 

5 Easy checkout ............................................................................................................................... 39 

6 Smart checkout ............................................................................................................................ 41 

6.1 Smart layout management .................................................................................................. 43 

6.2 Smart layout personalization ............................................................................................... 45 

7 In-App checkout (SDK iOS) ........................................................................................................... 47 

7.1 Functional Requirements ..................................................................................................... 47 

7.2 Introduction ......................................................................................................................... 47 

7.3 Adding SDK to the project .................................................................................................... 47 

7.4 SDK Configuration ................................................................................................................ 49 



 

7.5 SDK implementation ............................................................................................................ 51 

7.5.1 Payment Context Integration ....................................................................................... 51 

7.5.2 Widget integration ....................................................................................................... 52 

7.5.3 Integration by direct call on a specific payment method ............................................ 56 

7.5.4 Setting the Credit Card view in direct payments ......................................................... 56 

8 In-App checkout (SDK Android) ................................................................................................... 57 

8.1 Minimum Requirements ...................................................................................................... 57 

8.2 Adding dependency for SDK................................................................................................. 57 

8.3 SDK configuration ................................................................................................................. 59 

8.4 Graphic personalization ....................................................................................................... 59 

8.5 SDK Integration .................................................................................................................... 60 

8.6 PaymentSelectorActivity Integration ................................................................................... 60 

8.7 FragmentPayment Integration ............................................................................................. 62 

8.7.1 Implementation in an Activity ...................................................................................... 62 

8.7.2 Implementation in a Fragment .................................................................................... 65 

8.8 Direct call integration ........................................................................................................... 65 

8.9 Examples of the code ........................................................................................................... 66 

8.10 Examples of Layouts ............................................................................................................. 68 

9 Payment outcomes ...................................................................................................................... 69 

10 After the payment .................................................................................................................... 71 

10.1 Credit .................................................................................................................................... 71 

10.1.1 Example of Java Unirest ............................................................................................... 74 

10.1.2 Example of PHP Http Request ...................................................................................... 74 

10.1.3 Example of Node Request ............................................................................................ 75 

10.2 Void ...................................................................................................................................... 76 

10.3 Confirm ................................................................................................................................. 79 

10.3.1 Confirm with automatic void of the residual ............................................................... 81 

10.4 Verifying a Transaction (verify) ............................................................................................ 83 

10.5 Making one-click payments ................................................................................................. 85 

10.5.1 Phase 1 - Configuration ................................................................................................ 85 

10.5.2 Phase 2 - Card tokenization ......................................................................................... 86 

10.5.3 Phase 3 - Payment using token .................................................................................... 88 

10.6 Recurring payments (scheduled by the merchant).............................................................. 90 

10.6.1 Phase 1 - Configuration ................................................................................................ 90 



 

10.6.2 Phase 2 - Card tokenization ......................................................................................... 90 

10.6.3 Phase 3 - Payment using token .................................................................................... 90 

10.7 Deleting a tokenized card .................................................................................................... 92 

11 Error codes ............................................................................................................................... 93 

12 Testing environment information ............................................................................................ 94 

12.1 Testing 3DS 2.x ..................................................................................................................... 96 

13 Information for release to Production ..................................................................................... 97 

14 Merchant-side PCI data security information .......................................................................... 98 



1 Introduction 
This document presents useful information for the integration of a website with the Worldline e-

commerce platform. 

Websites offering e-commerce services usually provide a shopping cart with the summary of the 

products purchased and a button to complete the purchase through a payment request that can end 

on your website or through a redirection to a third-party site. 

1.1 Checkout solutions 
Worldline has several checkout solutions which are useful for optimizing conversions and increasing 

online sales. They can be easily integrated into your website as following: 

• Easy Checkout – With the Easy solution your customers can finish their purchase on a

personalized and optimized payment page for each device, which can be integrated with your

website very quickly, without having to worry about the security of the payment that is

guaranteed by Worldline

• Smart Checkout – Your customers can pay directly on your site and the transaction data will

be handled by Worldline in secure mode thanks to Worldline's default UI components that

can be easily integrated into your website with limited data security charges borne by us

(details in the Merchant- side PCI data security information section).

• In-App Checkout – With the Smart solution, you can integrate our iOS and Android SDKs to

have your customer complete their purchase directly in the App with the best mobile User

Experience

• API Checkout – Worldline APIs can be used to integrate the payment request within your

website (card data is managed by the merchant server)

1.2 Payment instruments 
Worldline has several payment instruments that can be accepted with a single integration, including 

the VISA, VISA Electron, VPay, Mastercard, Maestro, American Express and Diners schemes. 

1.3 Additional services 
This integration guide has all the necessary information to integrate your website with the Worldline 

e-commerce platform.



1.3.1 Saving payment data 
On request, by activating the “one-click” payments function, you can enable the service that lets you 

save payment data to facilitate future payments. For details on the calls to be made, see the “Making 

one-click payments” section. 

1.3.2 Payment notifications 
On request, you can enable a notification for each completed payment to receive via email, SMS. 

You can ask our support team to modify the communications sent (see Section 1.4). 

1.3.3 Customer notifications 
On request, you can enable a customer notification for each completed payment to be sent via email 

or SMS. 



You can ask our support team to change communications that have been sent (see section 1.4). 

1.3.4 Easy Checkout personalization 
Your payment page can be personalized with your logo and colors 

1.3.5 Easy Checkout optional forms 
Using the Easy Checkout solution, you can activate, on request, the following forms on the payment 

page: 

• Cart - The cart summary can be displayed on the payment page, including the logo, quantity,

description and unit price of each product purchased



• Addresses - The summary of shipping and billing addresses can be displayed, showing the

recipient, address, postcode, city, province and state for each.

1.4 Support information 
This integration guide has all the necessary information to integrate your website within the 

Worldline e-commerce platform. 

For any further information, simply write to the email address: 

ecommercesupport@axeptamail.com or contact us at (+39) 060 070 selecting option 1 and 
then 4. 

mailto:ecommercesupport@axeptamail.com


2 Initializing a payment 
To make a payment using the Worldline Payment Gateway (pHey), a Merchant must be configured 

on Worldline side. 

You must then be in possession of a valid key (AccessToken) for your user name and a user license. 

This Access Token can be obtained using your credentials at the following address https://pay-

test.axepta.it/access. It is recommended that you keep the access token in a safe place and set this 

access token as a setup parameter on your e-commerce system, so that it can be replaced easily if 

the need arises. The access token lasts for 10 years but can be revoked at the specific request of the 

merchant or for Worldline needs. 

Finally, you must possess an API License Key, which is indispensable for initializing the payment using 

server to server APIs. The license is of the alphanumeric type (for example: "ce7e4f96-3fa1-4696-

a669-80cfe2805411"). 

2.1 Payment Initialization (initPayment) 
The payment initialization call is required for every transaction that you want to carry out regardless 
of the integration method the merchant wishes to use. This is a technical payment initialization call 
that DOES NOT trigger any type of authorization flow. 

The specifications of the initialization call are below: 

METHOD POST 

ENDPOINT {{host server to server}}/api/v1/payment/initPayment 

HEADERS 
“Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“X-license-key": <-- API License Key --> 

(BODY) PARAMETERS 

}, 
"addresses": [ { 

"type": "SHIPPING", 
"addresseeName": "Mario Rossi", 
"streetAddress_1": "Via del Corso 1", 
"streetAddress_2": "C/O Worldline.", 
"zip": "00100", 
"city": "Rome", 
"provinceState": "RM", 
"country": "Italy" 

}, 

https://pay-test.axepta.it/access
https://pay-test.axepta.it/access


{ 
"type": "BILLING", 
"addresseeName": "Michele Bianchi", 
"streetAddress_1": "Via del Corso 1", 
"zip": "00100", 
"city": "Rome", 
"provinceState": "RM", 
"country": "Italy" 

} ], 
"addressesURI": "https://www.merchantSite.com/addressEdit", 
"products": [ { 

"logo": "https://logoRef.com/logo", 
"quantity": 1, 
"description": "Product1", 
"price": "49.75" 

}, 
{ 

"logo": " https://logoRef.com/logo ", 
"quantity": 1, 
"description": "Product2", 
"price": "34.83" 

} ], 
"redirect_successUrl": "https://www.merchantSite.it/success_redirect", 
"redirect_failureUrl": "https://www.merchantSite.it/failure_redirect", 
"callback_url": "https://www.merchantSite.it/callback", 
"additionals": [ { 

"key": "Test", 
"value": "Value" 

}, 
{ 

"key": "Test2", 
"value": "Value2" 

} ] 
} 

https://www.merchantsite.com/
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
http://www.merchantsite.it/success_redirect
http://www.merchantsite.it/failure_redirect
http://www.merchantsite.it/callback


}, 
"addresses": [ { 

"type": "SHIPPING", 
"addresseeName": "Mario Rossi", 
"streetAddress_1": "Via del Corso 1", 
"streetAddress_2": "C/O Worldline.", 
"zip": "00100", 
"city": "Rome", 
"provinceState": "RM", 
"country": "Italy" 

}, 
{ 

"type": "BILLING", 
"addresseeName": "Michele Bianchi", 
"streetAddress_1": "Via del Corso 1", 
"zip": "00100", 
"city": "Rome", 
"provinceState": "RM", 
"country": "Italy" 

} ], 
"addressesURI": "https://www.merchantSite.com/addressEdit", 
"products": [ { 

"logo": "https://logoRef.com/logo", 
"quantity": 1, 
"description": "Product1", 
"price": "49.75" 

}, 
{ 

"logo": " https://logoRef.com/logo ", 
"quantity": 1, 
"description": "Product2", 
"price": "34.83" 

} ], 
"redirect_successUrl": "https://www.merchantSite.it/success_redirect", 
"redirect_failureUrl": "https://www.merchantSite.it/failure_redirect", 
"callback_url": "https://www.merchantSite.it/callback", 
"additionals": [ { 

"key": "Test", 
"value": "Value" 

}, 
{ 

"key": "Test2", 
"value": "Value2" 

} ] 
} 

https://www.merchantsite.com/
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
https://i.ebayimg.com/images/g/B4oAAOSwrGlb0rW6/s-l300.jpg
http://www.merchantsite.it/success_redirect
http://www.merchantsite.it/failure_redirect
http://www.merchantsite.it/callback


RESPONSE 
{ 

"code": 200, 
"message": "SUCCESSFULLY", 
"paymentID": <-- payment ID --> 
} 

 ERROR RESPONSE 

{ 
"code": 1118, 
"message": "The data are necessary." 

} 



The callback_url parameter lets you receive the outcome of the transaction and the related data. 

Please see Par. “Payment outcomes”. 

The formats of the fields requested in Input are as follows: 

Field Name Format Description 

transaction_type 
Enumerative: 
[PURCHASE,AUTH,VER 
IFY] 

Describes the desired type of transaction. 
PURCHASE means that the cardholder 
would be charged immediately, AUTH 
means preauthorization (an amount would 
be only blocked on the card but not 
charged), VERIFY means that the card 
would be only verified if it is valid (note 
that you must specify an amount greater 
than zero, even if this amount would not 
be used). 

*1 

transaction_timeout Numeric format string 
Indicates the maximum waiting time for 
the transaction, the value is expressed in 
milliseconds. 

payInstrToken String 

Token identifying the customer’s wallet. 
For example, the user’s e-mail or ID can be 
passed to Worldline. See Par. “Making 
one-click payments” 

payCardToken String 

Token identifying a tokenized card 
belonging to the wallet corresponding to 
“payInstrToken”. It is not normally sent in 
input but is returned in output to the 
merchant after tokenizing. 
See from Par. “Making one-click 
payments” 

txIndicatorType 

Enumerative: 
[UNSCHEDULED, 
RECURRENT, 
NOSHOW, 
DELAYCHARGE] 

Indicator of the type of transaction to be 
used when paying with the wallet. See 
from Par. “Making one-click payments” 

tokenize Boolean 
Enables card tokenizing. See from Par. 
“Making one-click payments” 

1 The fields indicated with an asterisk are mandatory 



Page 18 of 98 

shopID String (max 64) 

Unique identifier of the transaction on 
merchant side. This string could be 
optionally passed in input, if needed for 
the merchant. Otherwise, a random string 
would be generated by Worldline. 
IMPORTANT: it is not possible to have two 
o more successfully transactions with the
same shopID. It means that if a transaction
fails, then the merchant may use again the
same shopID. It means that if a transaction
succeeds, then the merchant must NOT
use again the same shopID.

Currency 
ISO 4217 format 
string, e.g. “EUR” 

Currency to be used according to ISO 4217 
format 

* 

Language 

ISO 639-1 format 
string, possible values: 
IT, EN, FR, RU, JP, CN, 
NL, PL, ES, DE 

Language to be used in the client 
implementation 

* 

Amount String1 

Amount, formatted with two mandatory 
decimal places, separated by a dot “.”. For 
the “Verify” transaction_type, the amount 
should be set to at least “0.01” 
(uninfluential for authorization). 

* 

Notifications: 

name String 
Name of   the   Customer   making   the 
payment. 

email e-mail format string
Customer email   address   for   sending 
notifications via email. 

smartphone String 
Customer Smartphone number for sending 
notifications via SMS. 

Addresses: 

type 

Enumerative: 
[SHIPPING,BILLING,SP 
EDIZIONE,FATTURAZI 
ONE] 

Describes the address type. 

addresseeName String Address name. 

streetAddress_1 String Street name. 

streetAddress_2 String Additional field for Street name. 

zip 
Postal code format 
string 

Postal Code. 

city String City. 

provinceState 
ISO 3166 format 
string, e.g. “RM” 

Province. 

country String Country. 

   1
 All the string fields support a maximum of 2048 characters, unless specified 



addressesURI URL format string 
Merchant site URL for modification in 
shipping fields, if necessary. 

Products: 

image String URL of the product image. 

quantity String Product quantity. 

description String Product description. 

price String Product price. 

redirect_successUrl URL format string 

For the Easy integration, when the 
transaction has successfully concluded, the 
application performs a REDIRECT to this 
URL. URL must be in HTTPS. 
This URL is also used in some alternative 
payment methods, please see respective 
documents, if needed. 

redirect_failureUrl URL format string 

For the Easy integration, when the 
transaction has incorrectly concluded, the 
application performs a REDIRECT to this 
URL. URL must be in HTTPS. 
This URL is also used in some alternative 
payment methods, please see respective 
documents, if needed. 

callback_url URL format string 
Merchant callback URL to receive the 
outcome of the transaction 
asynchronously. URL must be in HTTPS 

Additionals: 
If you would like to add additional 
information to the transaction, you can 
specify this section. 

key String Additional information key. 

value String Additional information value. 



2.1.1 Example of Java Unirest integration 

HttpResponse<String> response = Unirest.post("https://pay-test.axepta.it/api/v1/payment/initPayment") 
.header("Content-Type", "application/json") 
.header("x-license-key", "XXXXXXX-0ERMYE0-MP683C5-9G0Q976") 
.header("Authorization", "Bearer 

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJkbkJyWVVhRHFGbF9IUFQ4QlZ3bGE3bm8yN2lXaWNXd25 
fVkNPdWZTTURjIn0.eyJqdGkiOiI4YTZkZjdlZC0wZWIwLTRjNWMtOWI0MS1lNjRmZjJmNWU5ODYiLCJleHAiOjE4 
ODQzMzUzNzMsIm5iZiI6MCwiaWF0IjoxNTY4OTc1NzYxLCJpc3MiOiJodHRwczovL3Nzby10ZXN0LmF4ZXB0YS5p 
dC9hdXRoL3JlYWxtcy9BeGVwdGElMjBJbnRlcm5ldCIsInN1YiI6ImI1NDYzN2M3LWQyZTktNDkxNC04YmNkLWE0 
Y2MxNjliZDAzOCIsInR5cCI6IkJlYXJlciIsImF6cCI6InBnLXBheW1lbnQtYXBpLWluZXQiLCJhdXRoX3RpbWUiOjE1Njg 
5NzUzNzMsInNlc3Npb25fc3RhdGUiOiJlN2E3MTg4MS01MGQ2LTQzN2QtODQyZS00MjAzNDcwYmY3NjIiLCJhY3 
IiOiIwIiwic2NvcGUiOiJvcGVuaWQifQ.N_4xTX9FjGTMzFsc7fERvciU4RAdXqCgeMoaymjScGCCSabZSApG5a- 
ybeYTEA5mC9hUWFwgyzSRLWTJhbnRz4vsc2vSwdR0xY_YImbdC-y1IV- 
lQkCLyOOEOwdI65slc2fHAZlrBE3jVo6nV6ee81meEGQeueMQ4L1hWO1u73ZlWKLzd_5YpRFKFD8HsNPKODdJV 
6V2o1q2vqkJhfS0D9e3iJn_ehuqEs35m1dyiwUwFXXnMeq1aK1QiVDdKTpZG5_46XJ3ixTfVQ- 
3eBPqJCwS3WYPy4wqtfud85oPT6NYuXDh-VKuGg2A13_2TAeFxQqvgGEU-RUGJdFR0xTY0A") 
.header("cache-control", "no-cache") 
.body("{\r\n \"transaction_type\": \"PURCHASE\",\r\n \"currency\": \"EUR\",\r\n \"language\": \"IT\",\r\n 

\"amount\": \"84.58\",\r\n \"notifications\": {\r\n \"name\": \"Paolo Verdi\",\r\n \"email\": 
\"paoloverdi@axepta.it\",\r\n \"smartphone\": \"\"\r\n   },\r\n   \"addresses\": [\r\n   {\r\n \"type\": 
\"SHIPPING\",\r\n   \"addresseeName\": \"Mario Bianchi\",\r\n   \"streetAddress_1\": \"Via del Corso 1\",\r\n 
\"streetAddress_2\":   \"C/O   Axepta.\",\r\n \"zip\":   \"00100\",\r\n \"city\":   \"Roma\",\r\n 
\"provinceState\": \"RM\",\r\n \"country\": \"Italia\"\r\n },\r\n {\r\n \"type\": \"BILLING\",\r\n 
\"addresseeName\": \"Francesco Bianchi\",\r\n \"streetAddress_1\": \"Via del Corso 1\",\r\n \"zip\": 
\"00100\",\r\n \"city\": \"Roma\",\r\n \"provinceState\": \"RM\",\r\n \"country\": \"Italia\"\r\n }\r\n 
],\r\n \"addressesURI\":   \"https://www.shop.com\",\r\n \"products\":   [\r\n {\r\n \"logo\": 
\"https://www.shop.com/01.jpg\",\r\n \"quantity\": 1,\r\n \"description\": \"Product\",\r\n \"price\": 
\"49.75\"\r\n },\r\n {\r\n \"logo\": \"https://www.shop.com/02.jpg\",\r\n \"quantity\": 1,\r\n 
\"description\": \"Product description\",\r\n \"price\": \"34.83\"\r\n }\r\n ],\r\n \"redirect_successUrl\": 
\"https://www.shop.com\",],\r\n   \"redirect_failureUrl\": \"https://www.shop.com\"\r\n   \"callback_url\": 
\"https://www.shop.com\",\r\n \"additionals\": [{\r\n \t\"key\": \"key_1\",\r\n \t\"value\": \"value_1\"\r\n 
},\r\n {\r\n \t\"key\": \"key_2\",\r\n \t\"value\": \"value_2\"\r\n }]\r\n}") 
.asString(); 

http://www.shop.com/01.jpg/
http://www.shop.com/02.jpg/
http://www.shop.com/02.jpg/


2.1.2 Example of PHP http Request integration 

<?php 

$request = new HttpRequest(); 
$request->setUrl('https://pay-test.axepta.it/api/v1/payment/initPayment'); 
$request->setMethod(HTTP_METH_POST); 

$request->setHeaders(array( 
'cache-control' => 'no-cache', 
'Authorization' => 'Bearer 

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJkbkJyWVVhRHFGbF9IUFQ4QlZ3bGE3bm8yN2lXaWNXd25 
fVkNPdWZTTURjIn0.eyJqdGkiOiI4YTZkZjdlZC0wZWIwLTRjNWMtOWI0MS1lNjRmZjJmNWU5ODYiLCJleHAiOjE4 
ODQzMzUzNzMsIm5iZiI6MCwiaWF0IjoxNTY4OTc1NzYxLCJpc3MiOiJodHRwczovL3Nzby10ZXN0LmF4ZXB0YS5p 
dC9hdXRoL3JlYWxtcy9BeGVwdGElMjBJbnRlcm5ldCIsInN1YiI6ImI1NDYzN2M3LWQyZTktNDkxNC04YmNkLWE0 
Y2MxNjliZDAzOCIsInR5cCI6IkJlYXJlciIsImF6cCI6InBnLXBheW1lbnQtYXBpLWluZXQiLCJhdXRoX3RpbWUiOjE1Njg 
5NzUzNzMsInNlc3Npb25fc3RhdGUiOiJlN2E3MTg4MS01MGQ2LTQzN2QtODQyZS00MjAzNDcwYmY3NjIiLCJhY3 
IiOiIwIiwic2NvcGUiOiJvcGVuaWQifQ.N_4xTX9FjGTMzFsc7fERvciU4RAdXqCgeMoaymjScGCCSabZSApG5a- 
ybeYTEA5mC9hUWFwgyzSRLWTJhbnRz4vsc2vSwdR0xY_YImbdC-y1IV- 
lQkCLyOOEOwdI65slc2fHAZlrBE3jVo6nV6ee81meEGQeueMQ4L1hWO1u73ZlWKLzd_5YpRFKFD8HsNPKODdJV 
6V2o1q2vqkJhfS0D9e3iJn_ehuqEs35m1dyiwUwFXXnMeq1aK1QiVDdKTpZG5_46XJ3ixTfVQ- 
3eBPqJCwS3WYPy4wqtfud85oPT6NYuXDh-VKuGg2A13_2TAeFxQqvgGEU-RUGJdFxxxxxxx', 
'x-license-key' => 'XXXXXXX-0ERMYE0-MP683C5-9G0Q976', 
'Content-Type' => 'application/json' 

)); 

$request->setBody('{ 
"transaction_type": "PURCHASE", 
"currency": "EUR", 
"language": "IT", 
"amount": "84.58", 
"notifications": { 
"name": "Paolo Verdi", 
"email": "paoloverdi@axepta.it", 
"smartphone": "" 

}, 
"addresses": [ 
{ 
"type": "SHIPPING", 
"addresseeName": "Mario Bianchi", 
"streetAddress_1": "Via del Corso 1", 
"streetAddress_2": "C/O Axepta.", 
"zip": "00100", 
"city": "Rome", 
"provinceState": "RM", 
"country": "Italy" 

}, 
{ 
"type": "BILLING", 
"addresseeName": "Francesco Bianchi", 
"streetAddress_1": "Via del Corso 1", 
"zip": "00100", 

mailto:paoloverdi@axepta.it


 

 

 

 

"city": "Rome", 
"provinceState": "RM", 
"country": "Italy" 

} 
], 
"addressesURI": "https://www.shop.com", 
"products": [ 
{ 
"logo": "https://www.shop.com/01.jpg", 
"quantity": 1, 
"description": "Product", 
"price": "49.75" 

}, 

{ 
"logo": "https://www.shop.com/02.jpg", 
"quantity": 1, 
"description": "Product description", 
"price": "34.83" 

} 
], 
"redirect_successUrl": "https://www.shop.com", 
"redirect_failureUrl": "https://www.shop.com", 
"callback_url": "https://www.shop.com", 
"additionals": [{ 

"key": "key_1", 
"value": "value_1" 

}, 
{ 

"key": "key_2", 
"value": "value_2" 

}] 
}'); 

 
try { 

$response = $request->send(); 

 
echo $response->getBody(); 

} catch (HttpException $ex) { 
echo $ex; 

} 

http://www.shop.com/
http://www.shop.com/
http://www.shop.com/01.jpg
http://www.shop.com/01.jpg
http://www.shop.com/02.jpg
http://www.shop.com/
http://www.shop.com/
http://www.shop.com/
http://www.shop.com/
http://www.shop.com/


2.1.3 Example of Node Request integration 

var request = require("request"); 

var options = { method: 'POST', 
url: 'https://pay-test.axepta.it/api/v1/payment/initPayment', 
headers: 

{ cache-control': 'no-cache', 
Authorization: 'Bearer 

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJkbkJyWVVhRHFGbF9IUFQ4QlZ3bGE3bm8yN2lXaWNXd25 
fVkNPdWZTTURjIn0.eyJqdGkiOiI4YTZkZjdlZC0wZWIwLTRjNWMtOWI0MS1lNjRmZjJmNWU5ODYiLCJleHAiOjE4 
ODQzMzUzNzMsIm5iZiI6MCwiaWF0IjoxNTY4OTc1NzYxLCJpc3MiOiJodHRwczovL3Nzby10ZXN0LmF4ZXB0YS5p 
dC9hdXRoL3JlYWxtcy9BeGVwdGElMjBJbnRlcm5ldCIsInN1YiI6ImI1NDYzN2M3LWQyZTktNDkxNC04YmNkLWE0 
Y2MxNjliZDAzOCIsInR5cCI6IkJlYXJlciIsImF6cCI6InBnLXBheW1lbnQtYXBpLWluZXQiLCJhdXRoX3RpbWUiOjE1Njg 
5NzUzNzMsInNlc3Npb25fc3RhdGUiOiJlN2E3MTg4MS01MGQ2LTQzN2QtODQyZS00MjAzNDcwYmY3NjIiLCJhY3 
IiOiIwIiwic2NvcGUiOiJvcGVuaWQifQ.N_4xTX9FjGTMzFsc7fERvciU4RAdXqCgeMoaymjScGCCSabZSApG5a- 
ybeYTEA5mC9hUWFwgyzSRLWTJhbnRz4vsc2vSwdR0xY_YImbdC-y1IV- 
lQkCLyOOEOwdI65slc2fHAZlrBE3jVo6nV6ee81meEGQeueMQ4L1hWO1u73ZlWKLzd_5YpRFKFD8HsNPKODdJV 
6V2o1q2vqkJhfS0D9e3iJn_ehuqEs35m1dyiwUwFXXnMeq1aK1QiVDdKTpZG5_46XJ3ixTfVQ- 
3eBPqJCwS3WYPy4wqtfud85oPT6NYuXDh-VKuGg2A13_2TAeFxQqvgGEU-RUGJdFRxxxxxx', 

'x-license-key': 'XXXXXXX-0ERMYE0-MP683C5-9G0Q976', 
'Content-Type': 'application/json' }, 

body: 
{ transaction_type: 'PURCHASE', 
currency: 'EUR', 
language: 'IT', 
amount: '84.58', 
notifications: 
{ name: 'Paolo Verdi', 

email: 'paoloverdi@axepta.it', 
smartphone: '' }, 

addresses: 
[ { type: 'SHIPPING', 

addresseeName: 'Mario Bianchi', 
streetAddress_1: 'Via del Corso 1', 
streetAddress_2: 'C/O Axepta', 
zip: '00100', 
city: 'Rome', 
provinceState: 'RM', 
country: 'Italy' }, 

{ type: 'BILLING', 
addresseeName: 'Francesco Bianchi', 
streetAddress_1: 'Via del Corso 1', 
zip: '00100', 
city: 'Rome', 
provinceState: 'RM', 
country: 'Italy' } ], 

addressesURI: 'https://www.shop.com', 
products: 
[ { logo: 'https://www.shop.com/01.jpg', 

quantity: 1, 
description: 'Product', 

http://www.shop.com/01.jpg%27


price: '49.75' }, 
{ logo: 'https://www.shop.com/02.jpg', 
quantity: 1, 
description: 'Product description', 
price: '34.83' } ], 

redirect_successUrl: 'https://www.shop.com', 
redirect_failureUrl: 'https://www.shop.com', 
callback_url: 'https://www.shop.com', 
additionals: 
[ { key: 'key_1', value: 'value_1' }, 
{ key: 'key_2', value: 'value_2' } ] }, 

json: true }; 

request(options, function (error, response, body) { 
if (error) throw new Error(error); 

console.log(body); 
}); 

http://www.shop.com/02.jpg%27
http://www.shop.com/02.jpg%27


3 Types of integration 
According to Business needs, the merchant can choose one of the following integration methods: 

• API checkout

• Easy checkout

• Smart checkout

• In-App checkout (SDK iOS)

• In-App checkout (SDK Android)

These types of integration are described in the sections that follow. 



4 API checkout 
Worldline APIs can be used to integrate the payment request within your website (the card data is 

managed by the merchant’s server). This type of integration has the highest level of personalization 

but also the highest implementation complexity on the merchant side. For this reason, it is only 

applicable to special needs. 

4.1 Payment execution (execute) 
The integration flow for performing an API Checkout integration (Server to server), in the simplest 

NO 3DS case, is set out below: 

• Invoke the initPayment service and retrieve the PaymentID parameter necessary for the

subsequent calls;

• Invoke the execute service using the PaymentID obtained from the initPayment call

The execution call has three possible answers in Output: 

• The outcome of the transaction

• An HTML string (next section1)

• A string containing a URL (next section)

The specifications of the payment execution call are below: 

1
This difference is given by the type of card used to make the payment: if the card, or the terminal used, are NOT enabled for 3DSecure, 

the response will be the outcome of the transaction; otherwise you will receive an HTML string or a string containing a URL. The actions to 

be taken if the card is enabled for 3DSecure will be explained in the next section.

WORLDLINE 



METHOD POST 

END POINT {{host server to server}}/api/v1/payment/execute/ PaymentID →

HEADERS 
“Content-type”: application/json 
“Authorization”: Bearer  ACCESS_TOKEN →
“X-license-key":  API License Key →

Card data in input without tokenizing enabled: 

(BODY) 
PARAMETERS 

{ 
"card_number": "4111111111111111", 
"card_cvv": "123", 
"card_expiration": "1023", 
"card_brand": "VISA", 
"name": "Mario", 
"surname": "Rossi", 
"tokenize": true 

} 

Previously tokenized card data (Tokenizing enabled): 

(BODY) 
PARAMETERS 

{ 
"payInstrToken": "LhyjhaVzC7bqDh7DPkhoxg2ktADWRqzn", 
"payCardToken": "1uPlsusK1LXiD84TStkngiOPIRqUkHkM" 

} 

The two possible responses in Output are: 

RESPONSE NO 3DS 
{ 

"mid": "merchantID", 
"instrument": "CREDITCARD", 
"operation_type": "PAYMENT", 
"isHTML": false, 
"transactionAt": "2019-11-29T15:17:19.373Z", 
"tid": "08000001", 
"shopID": "AfqhuojN7LCJw6UstZMVoPwo2QGNX8N7", 
"transaction_status": "PG_000", 
"token": "nloS0bPqZq8F27wcH4a5LNoOd2XVM55v", 
"maskedPan": "411111******1111", 

"brand": "VISA", 

"transactionID": "3079905680585024", 



"authCode": "288380", 
"xid": "MDAzMzMzODI4MzMxMjIzOTU2Nzc=", 
"transaction_code": "01010", "description_status": 
"TRANSACTION OK" 

} 

RESPONSE NO 3DS KO { 
"mid": "merchantID", 
"instrument": "CREDITCARD", 
"operation_type": "PAYMENT", 
"isHTML": false, 
"transactionAt": "2019-11-29T15:17:19.373Z", 
"tid": "08000001", 
"shopID": "AfqhuojN7LCJw6UstZMVoPwo2QGNX8N7", 
"transaction_status": "PG_001" 
"transaction_code": "00001", 
"description_status": "Generic error." 

} 

ERROR RESPONSE { 
"code": 1118, 
"message": "The data are necessary.", 

} 

The formats of the fields requested in Input without tokenizing are as follows: 

Field Name Format Description 
card_number String Card number *1
card_cvv String CVV number **2 

card_expiration MMYY format string 
Card expiry   date   in   the   indicated 
Format 

* 

card_brand String 
Brand of the card used. The string must 
be all uppercase and without spaces. 
e.g. MASTERCARD.

name String Cardholder name. 

surname String Cardholder surname. 

tokenize Boolean 
Boolean that allows the card to be 
tokenized, if the feature is enabled. 

The formats of the fields requested in previously tokenized input are as follows: 

Field Name Format Description 
payInstrToken String Unique ID of the wallet. For example, 

the user’s e-mail or ID can be passed to 
*



1 The fields marked with an asterisk are mandatory 
2 The fields marked with two asterisks are conditional, e.g. optional for a Mo.To terminal. 

The formats of the fields received in Output are as follows:

Axepta. See   Par.   “Making   one-click 
payments” 

payCardToken String Unique ID of the tokenized card. See 
Par. “Making one-click payments” 

* 

Field Name Format Description 
tid String Identification of the terminal used. 

instrument String 
Payment instrument used (e.g. 
CREDITCARD, MYBANK, ...). 

operation_type String Payment type (e.g. PAYMENT) 

mid String Merchant identifier. 

isHTML Boolean 
Identifies whether the response contains 
an HTML code for the use of 3dSecure. 

transactionAt String Payment execution date. 

shopID String Foreign key identifying the payment. 
transactionID String Order code processed. 

transaction_status Enum: [‘PG_000’, ‘PG_001’] 
Identification code of the outcome of the 
transaction. 

authCode String Authorization code returned by the issuer. 

brand String 
Credit card brand (e.g. VISA, 
MASTERCARD, …). 

maskedPan String Masked card number. 

token String Payment instrument token. 

xid String Foreign code created by the ACS. 

transaction_code String 
Error code identifying the status of the 
transaction. 

description_status String Return code description. 



4.1.1 Example of Java Unirest integration 

4.1.2 Example of PHP Http Request integration 

HttpResponse<String> response Unirest.post("https://pay- 
test.axepta.it/api/v1/payment/execute/950fb6770c43c93803f4a84f2750671115a5df75664295ea519a055d75 
bdb6aa") 
.header("Content-Type", "application/json") 
.header("x-license-key", "XXXXXXX-0ERMYE0-MP683C5-9G0Q976") 
.header("cache-control", "no-cache") 
.body("{\r\n \"card_number\": \"4111111111111111\",\r\n \"card_cvv\":\"111\",\r\n 

\"card_expiration\":\"1023\",\r\n \"card_brand \":\"VISA\"\r\n}") 
.asString(); 

<?php 

$request = new HttpRequest(); 
$request->setUrl('https://pay- 
test.axepta.it/api/v1/payment/execute/950fb6770c43c93803f4a84f2750671115a5df75664295ea519a055d75  
bdb6aa'); 
$request->setMethod(HTTP_METH_POST); 

$request->setHeaders(array( 
'Postman-Token' => '66b92915-d0d6-4faa-8d04-9ce91d17b730', 
'cache-control' => 'no-cache', 
'x-license-key' => 'XXXXXXX-0ERMYE0-MP683C5-9G0Q976', 
'Content-Type' => 'application/json' 

)); 

$request->setBody('{ 
"card_number": "4111111111111111", 
"card_cvv ":"111", 
"card_expiration":"1023", 
"card_brand ":"VISA" 

}'); 

try { 
$response = $request->send(); 

echo $response->getBody(); 
} catch (HttpException $ex) { 

echo $ex; 
}



4.1.3 Example of Node Request integration 

var request = require("request"); 

var options = { method: 'POST', 
url: 'https://pay- 

test.axepta.it/api/v1/payment/execute/950fb6770c43c93803f4a84f2750671115a5df75664295ea519a055d75 
bdb6aa’, 
headers: 
{ 'cache-control': 'no-cache', 

'x-license-key': 'XXXXXXX-0ERMYE0-MP683C5-9G0Q976', 
'Content-Type': 'application/json' }, 

body: 
{ card_number: '4111111111111111', 

card_cvv: '111', 
card_expiration: '1023', 
card_brand: 'VISA' }, 

json: true }; 

request(options, function (error, response, body) { 
if (error) throw new Error(error); 

console.log(body); 
}); 



4.2 Payment execution with 3DS 
The previous section described the API Checkout flow for the simplest case without 3DS. This section 

describes the integration flow for executing an API Checkout (Server to server) integration with 3DS 

(version 1 and version 2): 

• Invoke the initPayment service and retrieve the PaymentID parameter necessary for the

subsequent calls;

• Invoke the execute service using the PaymentID obtained from the initPayment call

• Render the HTML returned by the execute in the case of isHTML or redirect the URL obtained

in the case of is3D2

As mentioned in the previous section, the execution call has three possible answers in Output: 

• The outcome of the transaction (previous section)

• An HTML strings

• A string containing a URL

WORLDLINE 



The possible responses for the latter two cases are indicated below: 

RESPONSE 3DS OK { 
"code": 200, 
"message": "SUCCESSFULLY", 
"isHTML": true, 
"response": <-- HTML string --> 

} 

RESPONSE 3DS KO { 
"code": 200, 
"message": "SUCCESSFULLY", 
"isHTML": true, 
"response": “” 

} 

RESPONSE 3DS 2.0 OK { 
"code": 200, 
"message": "SUCCESSFULLY", 
"is3D2": true, 
"response": <-- URL ACS 3DSecure2.0 --> 

} 

RESPONSE 3DS 2.0 KO { 
"code": 200, 
"message": "SUCCESSFULLY", 
"is3D2": true, 
"response": “” 

} 

ERROR RESPONSE { 
"code": 1118, 
"message": "The data are necessary.", 

} 

The actions to be taken for payments with a 3DS or 3DS 2.0-enabled card are shown below (the 

parameters to be checked are "is HTML" and "is3D2" in response to execute) are indicated below: 

• 3DS: There will be an HTML string in response to the payment execution call; it must be

inserted into an <iframe> using the "srcDoc" attribute, or it can be inserted as a Blob in the

"src" attribute.

• 3DS 2.0: There will be a string containing a "URL" in response to the execution call; this must

be inserted into an <iframe> via the "src" attribute.

The 3DS page relating to the scheme used by the card will then be automatically displayed. 



Within the iframe, the user will perform the challenges necessary to complete the authentication 

requested by the payment provider. 

Once the authentication is complete, the rendering will take place within the iframe of a page with the 

outcome of the transaction. 

With the rendering of the outcome, an event will be triggered on the web page where the     iframe 

resides, which indicates the end of the transaction. 

The event is triggered with a script that invokes the window.postMessage() method. 

window.top.postMessage(‘axepta_ SUCCESS _message’, ‘*’); 

If the transaction is concluded successfully, an “axepta_SUCCESS_message” will be displayed. 

If the transaction fails, the message will be “axepta_FAILURE_message”. 

This event can be intercepted via a listener on the web page. When the event is intercepted, the 

transaction is concluded. 

Additionally, the callback is sent to the merchant backend. Please see Par. “Payment outcomes”. 



4.3 Direct Payment (directPayment) 
A direct payment can be made via a Server-To-Server call, that is, without having to invoke an 

initPayment. This type of call is necessary in special cases, for example, for Mo. To transactions. 

The data of the credit card or the token that identifies the payment instrument must be entered in 

the request. A terminal of those configured in the Merchant can also be specified. 

The specifications of the payment call are below: 

METHOD POST 

ENDPOINT {{host server to server}}/api/v1/payments/directPayment 

HEADERS 
“Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“x-license-key": <-- API License Key --> 

Card data in input without tokenizing: 

(BODY) 
PARAMETERS 

{ 
"tid": "08000001", 
"transaction_type": "PURCHASE", 
"currency": "EUR", 
"language": "IT", 
"amount": "84.58", 
"card_number": "4557773333333335", 
"card_expiration": "1122", 
"card_brand": "VISA", 
"notifications": { 

"name": "Mario Rossi", 
"email": "test@test.it", 
"smartphone": "3332233220" 

}, 
"callback_url": "https://www.merchantSite.it/callback", 
"additionals": [ { 

"key": "Test", 
"value": "Value" 

}, 
{ 

"key": "Prova2", 
"value": "Valore2" 

} ] 
} 

Card data tokenized previously (Tokenizing enabled): 

mailto:test@test.it
http://www.merchantsite.it/callback


(BODY) 
PARAMETE
RS 

{ 
"tid": "08000001", 
"transaction_type": "PURCHASE", 
"currency": "EUR", 
"language": "IT", 
"amount": "84.58", 
"payInstrToken": "test@test.it", 
"payCardToken": "1uPlsusK1LXiD84TStkngiOPIRqUkHkM", 
"txIndicatorType": "UNSCHEDULED", 
"notifications": { 

"name": "Mario Rossi", "email": 
"test@test.it", "smartphone": 
"3332233220" 

}, 
"callback_url": "https://www.merchantSite.it/callback", 
"additionals": [ { 

"key": "Test", 
"value": "Value" 

}, 
{ 

"key": "Test2", 
"value": "Value2" 

} ] 
} 

mailto:test@test.it
mailto:test@test.it
http://www.merchantsite.it/callback


The two possible responses in Output are: 

RESPONSE OK 

{ 
"mid": "merchantID", 
"paymentId": "<--PAYMENTID-->", 
"instrument": "CREDITCARD", 
"amount": "5.67", 
"currency": "EUR", 
"language": "IT", 
"transaction_type": "PURCHASE", 
"operation_type": "PAYMENT", 
"addresses": [], 
"products": [], 
"notification": { 

"name": "Marizio Moriconi", 
"email": "test@test.it", 
"smartphone": "" 

}, 
"additionals": [ 

{ 
"key": "Test", 
"value": "Value" 

}, 
{ 

"key": "Test2", 
"value": "Value2" 

} 
], 
"callback_url": "https://www.shop.com", 
"transactionAt": "2019-11-29T15:38:58.223Z", 
"shopID": "rItCFPnM7sv3uazR4CiC3ilrTXai08SH", 
"tid": "08000001", 
"transaction_status": "PG_000", 
"token": "9qGHUSU3OSYzvn0umztHdmBuPbi5o9JG", 
"maskedPan": "411111******1111", 
"brand": "VISA", 
"transactionID": "3079905820823791", 
"transaction_code": "01010", 
"description_status": "TRANSACTION OK" 

} 

mailto:test@test.it
http://www.shop.com/


{ 
"mid": "merchantID", 
"paymentId": “<--PAYMENTID-->“, 
"instrument": "CREDITCARD", 
"amount": "5.67", 
"currency": "EUR", 
"language": "IT", 
"transaction_type": "PURCHASE", 
"operation_type": "PAYMENT", 
"addresses": [], 
"products": [], 
"notification": { 

"name": "Marizio Moriconi", 
"email": "test@test.it", 
"smartphone": "" 

}, 
"additionals": [ 

{ 
"key": "Test", 
"value": "Value" 

}, 
{ 

"key": "Test2", 
"value": "Value2" 

} 
], 
"callback_url": "https://www.shop.com", "transactionAt": 
"2019-11-29T15:38:58.223Z", 
"shopID": "rItCFPnM7sv3uazR4CiC3ilrTXai08SH", 
"tid": "08000001", 
"transaction_status": "PG_001", 
"transaction_code": "00001", 
"description_status": "Generic error." 

} 

ERROR RESPONSE { 
"code": 1118, 
"message": "The data are necessary." 

} 

mailto:test@test.it
http://www.shop.com/


 

 

 

The formats of the fields requested in Input are indicated below: 
 

Field Name Format Description  

tid Numerical string 
Numeric identifier of the terminal 
to be used. 

 

transaction_type Enumerative: 
[PURCHASE,AUTH,VERIFY] 

Describes the type of transaction 
desired. 

*1 

currency ISO 4217 format string, e.g. 
"EUR" 

Currency to use. 
* 

language ISO 639-1 format string, e.g. 
"IT" 

Language to be used in the client 
implementation. 

* 

amount String Amount, formatted with two 
mandatory  decimal  places, 
separated by a dot "." 

 

* 

Notifications:    

name String Name of the Customer making the 
payment. 

 

email Email format string Customer email address for sending 
notifications via email. 

 

smartphone String Customer Smartphone number for 
sending notifications via SMS. 

 

card_number String Card number. **2 
card_expiration MMYY format string Card expiry in the indicated format. ** 

card_brand String 
Brand of the card used. The string 
must be all uppercase. 

 

 
 

payInstrToken 

 
 

String 

Token identifying the customer’s 
wallet. For example, it can be used 
to pass the user’s email or the 
user’s ID to e-commerce. See Par. 
“Making one-click payments” 

 
 

** 

 

payCardToken 
 

String 
Unique token identifying a 
tokenized card. See Par. “Making 
one-click payments” 

 

** 

card_cvv String 
Cvv number. It is not needed if it is 
a Mo.To. transaction 

** 

 
txIndicatorType 

Enumerative:[UNSCHEDULED, 
RECURRENT, NOSHOW, 
DELAYCHARGE] 

Indicator of the type of transaction 
to be used for a wallet payment. 
See Par. “Making one-click 
payments” 

 

 
tokenize 

 
Boolean 

Boolean that enables the card to be 
tokenized, if the feature is enabled. 
See Par. “Making one-click 
payments” 

 

1 The fields indicated with an asterisk are mandatory 
2 The fields indicated with two asterisks are conditional. 

 



The card data is required if and only if payInstrToken and payCardToken are not entered. See Par. 
“Making one-click payments”. 

callback_url URL format string 
Merchant callback URL to receive 
the outcome of the transaction. 
URL must be in HTTPS 

* 

Additionals: 

key String Additional information key. 

value String Additional information value. 

Field Name Format Description 
mid String Merchant identifier. 
paymentId String Axepta payment identifier. 

instrument String 
Payment instrument 
CREDITCARD, MYBANK, ...). 

used (e.g. 

operation_type String Payment type (e.g. PAYMENT) 



The formats of the fields received in Output are as follows: 

transaction_type 
Enumerative: 
[PURCHASE,AUTH,VERIFY] 

Describes the type of transaction desired. 

currency 
ISO 4217 format string, e.g. 
"EUR" 

Currency to be used according to ISO 4217 
format 

language 
ISO 639-1 format string, 
possible values: 
IT, EN, FR, RU, JP, CN, NL, PL, 
ES, DE 

Language to be used 
implementation 

in   the client 

amount String1 
Amount, formatted with two mandatory 
decimal places, separated by a dot "." 

Notifications: 

name String 
Name of   the   Customer   making   the 
payment. 

email E-mail format string
Customer email   address   for   sending 
notifications via email. 

smartphone String 
Customer Smartphone number for 
sending notifications via SMS. 

Addresses: 

type 
Enumerative: 
[SHIPPING,BILLING] 

Describes the address type. 

addresseeName String Address name. 

streetAddress_1 String Street name. 
streetAddress_2 String Additional field for Street name. 

zip Postal Code format string Postal Code. 
city String City. 



provinceState 
ISO 3166 format string, e.g. 
"RM" 

Province. 

country String Country. 

addressesURI URL format string 
Merchant site URL for modification to 
shipping fields, if necessary. 

Products: 

logo String Reference to the product image. 

quantity String Product quantity. 

description String Product description. 
price String Product price. 

Additionals: 
If you would like to add additional 
information to the transaction, you can 
specify this section. 

key String Additional information key. 

value String Additional information value. 

callback_url URL format string 
Merchant callback URL to receive the 
outcome of the transaction. URL must be 
in HTTPS 

tid String Identifier of the terminal used. 

transactionAt String Payment execution date. 

shopID String Foreign key identifying the payment. 
transactionID String Order code processed. 

transaction_status Enum: [‘PG_000’, ‘PG_001’] 
Identification code of the outcome of the 
transaction. 

authCode String Authorization code returned by the issuer. 

brand String 
Credit card brand (e.g. VISA, 
MASTERCARD, …). 

maskedPan String Masked card number. 

xid String Foreign code created by the ACS. 

transaction_code String 
Error code identifying the  status  of the 
transaction. 

description_status String Return code description. 

payInstrToken String 

Unique token identifying a wallet. For 
example, the user’s e-mail or ID can be 
passed to e-commerce. See Par. “Making 
one-click payments” 

payCardToken String 
Unique token identifying a tokenized card. 
See Par. “Making one-click payments” 



5 Easy checkout 
Once configured, this integration, upon checkout, performs a redirect to the payment page provided 

by Worldline. 

The compatible versions of the browsers are as follows: 

• Chrome 51 May 2016

• Firefox 54 Jun 2017

• Edge 14 Aug 2016

• Safari 10 Sep 2016

• Opera 38 Jun 2016

• IE 11

The integration flow for performing an Easy integration is shown below: 

• Invoke the initPayment service and retrieve the PaymentID parameter necessary for the

subsequent calls;

• Initialize the clientAxepta with the Easy license key and the PaymentID (returned by

initPayment) to invoke the proceedToPayment javascript function.

An example of the Easy integration is shown below: 

WORLDLINE 



Please see Par. “Payment outcomes” for explanations on how to get transaction results.

<!DOCTYPE html> 
<html> 
<head> 

<title>SDK Redirect Integration Example</title> 
<meta name="viewport" content="initial-scale=1.0"> 
<meta charset="utf-8"> 

</head> 

<body> 
<button type="button" onClick="axeptaClient.proceedToPayment(' PaymentId →')">Checkout</button> 

<script src="https://pay-test.axepta.it/sdk/axepta-pg-redirect.js"></script> 
<script type="text/javascript"> 
let axeptaClient = new AxeptaSDKClient("https://pay-test.axepta.it"," Easy type LICENSE Key →"); 

</script> 
</body> 
</html> 



6 Smart checkout 
This type of integration is a simple implementation of the card fields that can be integrated within 

your site. Unlike the Easy integration, the Smart integration requires that a div is created within your 

e-commerce site. In this case the fields of interest (for example, those of the card for the payment) will

be displayed inside the div itself.

The compatible versions of the browsers are listed below:

• Chrome 51 May 2016

• Firefox 54 Jun 2017

• Edge 14 Aug 2016

• Safari 10 Sep 2016

• Opera 38 Jun 2016

• IE 11

The integration flow for performing a Smart integration is shown below: 

• Invoke the initPayment service and retrieve the PaymentID parameter necessary for the

subsequent calls;

• Initialize the clientAxepta with the Smart license key and the PaymentID (returned by

initPayment) to invoke the preparePayment javascript function .An

example of Smart integration is shown below: 

<!DOCTYPE html> 
<html> 
<head> 

<title>SDK JS Integration Example</title> 

<meta name="viewport" content="initial-scale=1.0"> 



Please see Par. “Payment outcomes” for explanations on how to get transaction results. 

<meta charset="utf-8"> 
</head> 
<body> 

<!—EXAMPLE OF CHECKOUT BUTTON --> 
<button type="button" 

onClick="axeptaClient.preparePayment(' paymentID →','inline')">Checkout</button> 
<!-- THE TAG WHERE THE HOSTED FORM WILL BE DISPLAYED --> 
<div id="my-axepta-sdk-pg"></div> 
<!-- THE SCRIPT TO BE RETRIEVED BY CDN --> 
<script src="https://pay.axepta.it/sdk/axepta-pg-sdk.js"></script> 
<!—INITIALIZATION OF CLIENT AND USE --> 
<script type="text/javascript"> 
let axeptaClient = new AxeptaSDKClient("https://pay-test.axepta.it"," Smart LICENSE →"); 

</script> 
</body> 
</html> 



6.1 Smart layout management 
In this integration, you can define three different layouts using an optional parameter within the 

feature described above: 

axeptaClient.preparePayment(‘←-PaymentID-→, ‘←- Layout -→’); 

If you do not enter the Layout parameter, the default layout will be displayed: 

To obtain a layout with no name and surname, the preparePayment() call must contain a second 
parameter that is 'compact': 

axeptaClient.preparePayment('←- PaymentID -->', 'compact'); 

PAY 

PAY 



If you would like an inline layout without the PAY button, the preparePayment() call must  contain 

a second parameter that is 'inline': 

axeptaClient.preparePayment('←- PaymentID -->', 'inline'); 

and in the script, the form can be posted with the method axeptaClient.submit(); 

If you would like to control the button for proceed with payment, then the preparePayment() call 

must contain a second 'buttonless' parameter: 

axeptaClient.preparePayment('←- PaymentID -->', 'buttonless'); 

and in the script, the form can be posted with the method axeptaClient.submit(); 

<!-- ESEMPIO DI PULSANTE SUBMIT --> 

<button id="submit" type="button" onClick="axeptaClient.submit()">Submit</button> 

<!-- ESEMPIO DI PULSANTE SUBMIT --> 

<button id="submit" type="button" onClick="axeptaClient.submit()">Submit</button> 



6.2 Smart layout personalization 
A number of style classes which you can modify to personalize the Smart layout are listed below: 

Class Description 

axepta-sdk-textfield-outlined Class that defines the text input style with 

Outline layout. 

axepta-sdk-textfield-outlined:focus:invalid Class that defines the text input style 

when in the focus state and the value entered 

is invalid. 

axepta-sdk-textfield-outlined:focus:valid Class that defines the text input style 

when in the focus state and the value entered 

is valid. 

axepta-sdk-textfield- 
outlined:valid:not(:focus):not(:placeholder- 
shown) 

Class that defines the text input style when 
not in the focus state, the value entered is valid 
and the PlaceHolder of the ield is not 
displayed. 

axepta-sdk-button-contained Class that defines the style of the button that 

executes the payment. 

axepta-sdk-button-contained:disabled Class that defines the style of the button that 
executes the payment, when it is in the 
disabled state. In particular, it is in this state if 
the values in the fields are invalid or the fields 
are empty. 

axepta-sdk-button-contained:not(:disabled) Class that defines the style of the button that 
executes the payment, when it is not in the 
disabled state. 



The table of the classes for personalizing the “inline” layout is shown below: 

Class Description 

axepta-sdk-textfield-outlined-inline Class that defines the container of the entire 

Widget 

axepta-sdk-flex-row-inline 
Defines the style of the line. 

axepta-sdk-textfield-outlined-noBorder- Pan 
Defines the borderless style of the Pan input. 

axepta-sdk-input-add-on-inline Manages the position of the Pan input for the 
parent. 

axepta-sdk-flex-col-inline 
Sets the Pan input as a column. 

axepta-sdk-pan-icon-inline 
Container of the pan icon. 

axepta-sdk-input-add-on-item-inline Manages the position of the Pan icon, for the 

parent. 

axepta-sdk-flex-row-inline-cvv 
Container for the expiry and cvv inputs. 

axepta-sdk-flex-col-left-inline Manages the position to the left of the 
expiry input, for the parent. 

axepta-sdk-textfield-outlined-noBorder Defines the borderless style of the expiry 

input. 

axepta-sdk-pan-icon-inline-cvv 
Container for the cvv input and its icon. 

axepta-sdk-flex-col-right-inline Manages the position to the right of the cvv 

input, for the parent. 

axepta-sdk-textfield-outlined-noBorder-cvv Defines the borderless style of the cvv 

input. 

axepta-sdk-input-add-on-item-inline-cvv Defines the position of the cvv icon for the 

parent. 



7 In-App checkout (SDK iOS) 

7.1 Functional Requirements 
iOS version supported: from 11.0 to 14.2 Xcode 12 

7.2 Introduction 
The WorldlineSDKClient framework allows payments to be made on the enabled schemes by: 

• enabling a payment context managed completely by SDK

• integrating a graphic widget

• direct calls to make a payment on a determinate scheme

7.3 Adding SDK to the project 
Follow the steps below to add SDK: 

1. Open the project with Xcode and drag the WorldlineSDKClient.xcframework file onto the

“project navigator”, checking that the "copy items if needed" and "Add to targets" items are

enabled:

2. At this point the "project navigator" should display the framework:



3. Check that the framework is present on the “General” tab of the Target in the “Frameworks,

Libraries and Embedded contents” section (with the “Embed & Sign” option enabled):

4. Check that the framework is present in the Build Phases, in the “Link Binary with Libraries”

and “Embed Frameworks” sections:



5. If it is not present, select the + sign at the bottom of the “Frameworks, Libraries and

Embedded contents” section and add it by hand, activating the “Embed & Sign” option if not

enabled:

6. Check that the framework is present in the Build Phases as described in section 4.

7.4 SDK Configuration 

Once the SDK has been added, an initial configuration is required. 

1. In the AppDelegate file of the project, initialize the configuration by passing the endPoint for

payments and the licenseKey to the SDK.

Optionally, it is possible to enable logs and print debug messages in console setting the 

"enableDebug" parameter to "true" (it defaults to false): 

func application(_ application: UIApplication, didFinishLaunchingWithOptions 

launchOptions: [UIApplication.LaunchOptionsKey: Any]?) -> Bool { 

Axepta.shared.configure(endPointUrl: "https://...", licenseKey: "XXXXXXX- 

XXXXXXX-XXXXXX-XXXXXXX", enableDebug: true) 

return true 

} 

2. For debug purposes, it is possible to print in console the current installed SDK version number

using



Import AxeptaSDKClient 

. . . 

Axepta.shared.showVersionNumber() 

3. Drag the AXPCustomizations.xcassets folder into the project, always selecting the “Copy

items if needed” and “Create groups” options. The Asset Catalog contains some Color Sets,

used by the SDK for the graphic customizations and a logo, which will be used as the logo of

the navigation bar on the screens managed by the SDK:

▪ axpButtonColor: is used to customize the color of the payment and back

buttons on the payment Widgets

▪ axpDisabledButtonColor: is used to customize the color of the payment

button where it is not enabled

▪ axpLoaderBkgColor: is used to customize the background color of the loader

shown by the SDK during the operations

▪ axpLoaderColor: is used to customize the color of the loader shown by the

SDK during the operations

▪ axp-header-logo: is used to customize the logo loaded by the navigation bar

managed by the SDK. The image provided can be used as a template for

formatting a custom image. If the logo is removed from the asset there will

be no logo on the navigation bar. N.B. The navigation bar only shows this

logo using the integration methods by Payment Context or a direct call,



setting the “present” parameter to true (as described in the next section). 

If the “present” parameter is set to false, and the payment functions are 

loaded from a UIViewController inside a UINavigationController, the 

navigation bar used will be that of the application (and thus freely 

customizable). 

7.5 SDK implementation 

As mentioned in the introductory section, there are three different integration methods: 

• Integration through the Payment Context: with this type of integration, the SDK will provide

a selector to choose the payment method for every product, and will manage the subsequent

payment phases autonomously;

• Integration through a Widget: some types of payment have a Widget embedded as a normal

view to which an external payment button can be linked, or the default button can be used.

• Integration through a direct call: payments can be managed directly through a public interface

that starts the payment on a specific scheme.

7.5.1 Payment Context Integration

This type of integration is used to display the list of payment methods enabled for every product, 

thus allowing the payment to be managed directly by SDK. 

The Payment Context managed by the SDK can be linked to the tag on the object using the 

createPaymentContext function of the Worldline class by means of a Singleton. 

Example of the code: 

import AxeptaSDKClient 
... 

Axepta.shared.createPaymentContext("productId”, countryCode: "IT”, present: 

false) 

The function accepts the following parameters in input: 

• itemId: the ID of the payment, i.e. the output of the initPayment (see Par. Payment



Initialization) 

• countryCode: the ISO of the countryCode for the payment

• present: a Boolean that enables the payment methods selector to be shown as modal (if set to

true) or through a show on UINavigationController (if supported by the application, and

setting this parameter to false).

7.5.2 Widget integration 

There are three types of widget, all of the UIView type, which can be instantiated and embedded in 

any container UIView: 

AXPPhoneNumberWidget, AXPBankSelectorWidget, AXPCreditCardWidget 

A description of the characteristics and initialization methods of each of these widgets is provided 

below. Using, for example, a “widgetContainer” UIView in which to embed the widgets, a maximum 

height of 185px can be set on the container view with a low priority: in this way, the widget will 

automatically readapt according to the Mode set at the time of initialization (as will be described later 

on): 

The PaymentDelegate protocol, common to all widgets, shows three functions that can be used to 

intercept the outcome of the transactions (any errors including “title” and “message” information, or 

conclusion of the process), and requires the declaration of the paymentID variable, which will be used 

by the widgets to make the payment: 



Before any Widget can be initialized, the SDK must be imported: 

import AxeptaSDKClient 

AXPCreditCardWidget 
Can be used for payments made using a Credit Card. This Widget in particular can be configured in 3 

different versions, according to the mode with which it is initialized: 

Mode: .default Mode: .compact Mode: .inline 

For this widget, the SDK offers three types of view; “default”, “compact” and “inline”, so as to satisfy 

the layout needs of the developer: 

o “default” mode uses a height of 185px;

o “compact” mode uses a height of 142px;

o “inline” mode uses a height of 84px.

Initialization: 

var paymentWidget = AXPCreditCardWidget(viewMode: .defaultMode, 

lang: "it", 

borderRadiusButton: 2, 

borderRadiusTextFields: 3, 

delegate: self) 

public protocol PaymentDelegate { 

var paymentID: String! { get set } 

func onPaymentFinished() 

func onPaymentError(title:String?, message:String?) 

func onPaymentCanceled() 

} 



• viewMode: is of the Modality type, an enum shown by the SDK, which can be set to the

following values:

• .defaultMode

• .compactMode

• .inlineMode

• lang: defines the language (according to the ISO639-1 standards): IT, EN, FR. If the parameter

passed does not correspond to one of the languages managed by the widget, English will be

used as the default language;

• borderRadiusButton: rounds the borders of the payment button;

• borderRadiusTextField: rounds the input fields;

• delegate: the object compliant with the PaymentDelegate protocol.

Using the inline layout (which has no payment button embedded in the component), the 

payNow(itemId: String) function can be activated directly, to manage the payment by customized 

interaction: 

The itemId is the ID of the payment, i.e. the output of the initPayment (see Par. Payment 

Initialization), a required variable of the PaymentDelegate protocol. 

func payNow(itemId: String) 

... 



Example of the code: 

import UIKit 

import AxeptaSDKClient 

class PaymentViewController: UIViewController { 

@IBOutlet weak var widgetContainer:UIView! 

@IBOutlet weak var payButton: UIButton! 

var paymentWidget : AXPPaymentWidget? 

var itemToPay: Item? 

var paymentID: String! 

override func viewDidLoad() { 

super.viewDidLoad() 

payButton.addTarget(self, action: #selector(payBtnTapped(_:)), for: 

.touchUpInside) 

payButton.clipsToBounds = true 

payButton.layer.cornerRadius = 4.0 

payButton.isHidden = SDKSettingsManager.shared.sdkModality != .inlineMode 

guard let itemToPay = itemToPay else { return } 



paymentID = itemToPay.itemId 

/** SDK Widget Initialization **/ 

paymentWidget = AXPCreditCardWidget( 

viewMode : .defaultMode, 

lang : itemToPay.language.lowercased(), 

borderRadiusButton : 2, 

borderRadiusTextFields : 3, 

delegate : self) 

paymentWidget!.attachTo(widgetContainer) 

/************/ 

} 

@IBAction func payBtnTapped(_ sender: Any) { 

// Action associated with the external payment button in .inline mode 

guard let itemToPay = itemToPay else { return } 

self.paymentWidget!.payNow(itemId: itemToPay.itemId) 

} 

} 

extension PaymentViewController: PaymentDelegate { 

// MARK: Payment Delegate 

func onPaymentFinished() { 

print(#function) 

self.navigationController?.popViewController(animated: true) 

} 

func onPaymentError(title: String?, message: String?) { 

print("\(#function) error:\(String(describing: message)") 

DispatchQueue.main.async { [weak self] in 

guard let self = self else { return } 

if let message = messaggio, let title = titolo { 

let alert = UIAlertController.init(title: title, message: message, 

preferredStyle: .alert) 

alert.addAction(UIAlertAction.init(title: "OK", style: .default, 

handler: { [weak self](action) in 

self?.navigationController?.popViewController(animated: true) 

})) 

self.present(alert, animated: true, completion: nil) 

} 

} 

} 

func onPaymentCanceled() { 

print(#function) 

self.navigationController?.popViewController(animated: true) 

} 

} 



7.5.3 Integration by direct call on a specific payment method 

The last integration mode is the one that enables the use of the direct payment method from the 

AXPPaymentManager class: 

public func executeDirectPaymentWith(itemId: String, 

circuit: Circuit, 

language: String, 

countryCode: String?, 

present: Bool = true) 

• itemId: the ID of the payment, i.e. the output of the initPayment (see Par. Payment

Initialization);

• circuit: an enum of the Circuit type, which can be set to: .creditCard,
.bancomatPay, .satispay, .aliPay, .weChat, .myBank;1 

• language: defines the language (according to the ISO639-1 standards): IT, EN, FR. If the

parameter passed does not correspond to any of the languages managed by the widget,

English will be used as the default language;

• countryCode: the country code of the product to be paid (mandatory in payments on the Ali

Pay, We Chat, Apple Pay)2 payment method. The default setting is “IT”;

• present: a Boolean, set by default to true, to determine whether the screen that includes the

graphic widgets is to appear as modal (if set to true) or as a show on UINavigationController

(if present in the application integrating the SDK, and if the value is set to false).

Using this method, the payment can be triggered directly by interaction with a button or from a 

gesture. 

Example of the code: 
AXPPaymentManager.shared.executeDirectPaymentWith(itemId: paymentId, 

circuit: .creditCard, 

language: "IT”, 

countryCode: "IT”) 

7.5.4 Setting the Credit Card view in direct payments 

If you decide to use the credit card payment without initializing the graphic widget (that is, through 

the Payment Context or a direct call), the widget viewing method can be decided upon by passing the 

parameter directly to the singleton in the Worldline class. 

Example of a code: 
Axepta.shared.creditCardMode = .inlineMode 

1 If alternative payment methods have to be implemented, contact Axepta for support. 
2 If alternative payment methods have to be implemented, contact Axepta for support. 



8 In-App checkout (SDK Android) 
This SDK installation guide allows easy payment execution and a series of pre-set screens to meet 

different graphic needs, with the possibility of creating custom elements and the direct use of payment 

methods. The SDK naturally provides implementing developers the ability to capture SUCCESS and 

FAILURE events. 

8.1 Minimum Requirements 
To be able to integrate the SDK correctly, Android 6.0 (API 23) or a later version is required. The SDK 

has been made compatible with androidX, so the versions supported are API 23 and later. 

8.2 Adding dependency for SDK 
Follow the steps below to add dependencies for the SDK: 

1. Take the file.arr of the SDK:

2. On the open project, enter Project view mode in Android Studio:

3. Locate the libs folder (within the app) and copy the file from the previous step into it:

4. It differs from one operating system to another, in the case of Mac OS X, open the

Project Structure panel using the File button:

5. Select Dependency, under Modules select app, then press the + button and select Jar

Dependency:



6. Select the item with the name of the SDK from the first drop-down menu. The second drop-

down menu should be left with the default item, implementation, then press the OK button:

7. A new item for the library has now appeared, as can be seen from the image below. To finish

correctly adding the dependency, press the APPLY button below and then press OK:

8. To verify that you have entered the dependency successfully, enter the build.gradle(Module:

App) file and check that the implementation has been added correctly.



8.3 SDK configuration 

Having added the dependency to the SDK, an initial configuration is necessary: 

• Invoke the ApiService.setEndPointAndLicence() method, which requires two parameters:

o endpoint, the endpoint to be contacted to make the executive call to make the payment.

Parameter type → String

o licence, the x-licence-api provided (of the In-App SDK Android) type.

Parameter type → String
o enableDebug, enable logs and print debug messages in console (default is false)

• Invoke the ApiService.paymentConfiguration() method, this method requires input:

o paymentId, the ID of the payment received from the init call made previously.

Parameter type → String
o countryCode, ISO code of the countryCode of the payment → String

• For debug purposes, it is possible to print in console the current installed SDK version number

using the showVersionSdk function Utils.showVersionSDK()

8.4 Graphic personalization
The colors of buttons, backgrounds and radii of buttons or text fields can be personalized. To be able 

to customize these parameters, you will have to enter the same keys used in the SDK containing the 

desired value in the color.xml file (for the colours), dimen.xml (for the size), drawable folder (for the 

images) of your project: 

• Colours:

o background_color: used to change the background colour of widgets

o button_background_default_color: used to personalize the background colour of

the buttons

o btn_color_enable: background colour of the button when it is enabled

o btn_color_disable: background colour of the button disabled

o background_loader: background colour of the screen of the loader

o input_field_strokes_color: colour of the borders of the editable fields

o input_field_background_color: background colour of the EditText

o button_pay_text_color: colour of the payment button text

o loader_color: colour of the progress bar of the loader screen



o item_selector_color: background colour of the selector item

• Size

o default_edit_text_radius: radius of editable field borders

o default_button_border_radius: radius of button borders

• Drawable:

o logo: logo loaded from the toolbar managed by the SDK. The logo will only be visible in the

PaymetSelectorActivity integration mode. If no logo is set, the navigation bar will appear blank

8.5 SDK Integration 
There are three types of SDK integration: 

• Integration by PaymentSelectorActivity: in this case, the SELECTOR mode will be

displayed, enabling the user to choose the type of payment and the subsequent

phases of the payment will be managed automatically by the SDK.

• Integration by FragmentPayment: when the type of circuit to be used to make the

payment is passed, the View for the selected mode to which an external button can

be linked for the payment will be displayed or the default view can be used.

• Integration by direct calls: methods for starting payments directly on a specific scheme

have been shown

8.6 PaymentSelectorActivity Integration 
This type of integration enables the list of enabled payment methods for every product to be viewed. 

Once the payment method has been selected, the subsequent phases of the payment will be 

managed directly by SDK. 



To be able to integrate this mode, an intent will have to be executed in 

PaymentSelectorActivity 

Java 
Intent intent=new Intent(context,PaymentSelectorActivity.class) 
startActivity(intent) 

Kotlin 
val intent = Intent(context, PaymentSelectorActivity::class.java) 
startActivity(intent) 



8.7 FragmentPayment Integration 
8.7.1 Implementation in an Activity 

The implementation of the elements for the effective use of this SDK requires a few steps both on 

the Java side and on the xml resources (layout) side). 

Here are the steps necessary for the correct implementation within an Activity: 

1. Instantiate a ResultExecutePaymentCallback object, which will be our callback.

private FragmentPayment.ResultExecutePaymentCallback resultExecutePaymentCallback; 
... 

2. Create a method, such as initCallBackSdkPayment. Then override the methods needed to

capture the SUCCESS and FAILURE outcomes that will be generated by the SDK. 

Java 

private void initCallBackSdkPayment() { 

resultExecutePaymentCallback = new FragmentPayment.ResultExecutePaymentCallback() { 

@Override 

public void onExecuteSuccess() { 

Toast.makeText(getApplicationContext(), "Success", Toast.LENGTH_LONG).show(); 

} 

@Override 

public void onExecuteFailure() { 

Toast.makeText(getApplicationContext(), "Failure", Toast.LENGTH_LONG).show(); 

} 

}; 

} 

… 

Kotlin 

val resultExecutePaymentCallback = object : ResultExecutePaymentCallback { 

override fun onExecuteSuccess() { 

} 

override fun onExecuteFailure(reason: String?) { 

} 

} 



3. Invoke the initCallBackSdkPayment method immediately after setContentView

           within the onCreate activity. 

@Override 

protected void onCreate(Bundle savedInstanceState) { 

super.onCreate(savedInstanceState); 

setContentView(R.layout.activity_main); 

initCallBackSdkPayment(); 

... 

4. Create a FragmentPayment (a Fragment) object instance, which will process all the

information entered into it by the user and if positive, proceed with the payment, otherwise it will return 
an error signal. Below are the elements that make up the FragmentPayment object constructor. 

a. paymentType: accepted values [CREDIT_CARD - SATISPAY - BANCOMATPAY

- MY_BANK - WECHAT - ALIPAY ]1. The payment method indicated will be

shown according to the value shown. Parameter type -> PaymentType

b. viewType, accepted values [DEFAULT - COMPACT - INLINE]. This will generate a

different view according to the value indicated. The INLINE view allows use of the

direct call integration mode, thus giving the possibility of using custom components.

Parameter type -> ViewType.

c. resultExecutePaymentCallback returns the callback of the executeCall() method

(defined in the Custom button – Payment section)

1 If alternative payments method have to be implemented, contact Axepta for support. 

Java 

final FragmentPayment = new FragmentPayment( 

FragmentPayment.PaymentType.CREDIT_CARD, 

ViewType.COMPACT, 

resultExecutePaymentCallback); 



5. Add the Fragment: The following image shows a sequence of standard commands for adding

a Fragment within a layout

6. in this case a FrameLayout

<FrameLayout android:id="@+id/container" 

android:layout_width="match_parent" 

android:layout_height="wrap_content" 

android:layout_gravity="center_vertical|center_horizontal"> 

</FrameLayout> 

… 

Kotlin 

val fragmentPayment = FragmentPayment( 

FragmentPayment.PaymentType.CREDIT_CARD, 

ViewType.COMPACT, 

resultExecutePaymentCallback, buttonStateCallback 

) 

FragmentManager = getSupportFragmentManager(); 

FragmentTransaction = fragmentManager.beginTransaction(); 

fragmentTransaction.add(R.id.container,fragmentPayment).addToBackStack(null).commit(); 

... 



8.7.2 Implementation in a Fragment 
For implementation within a Fragment, all the explanations above are valid. It is best to implement 

this by overriding the onViewCreated method and entering all of the instructions indicated within the 

latter. The only change to be made is on point “5” of section 2.12.7.1. The code you need to create a 

childFragment to integrate Fragment (FragmentPayment) within your Fragment is indicated below: 

FragmentTransaction transaction = getChildFragmentManager().beginTransaction(); 
transaction.replace(R.id.container, fragmentPayment).commit(); 

8.8 Direct call integration 
The possibility of including additional graphic elements, for example, a button that respects all the UI 

and UX lines that are being followed in your project, has been left. 

The appropriate method will have to be invoked according to the payment method: 

• CREDIT_CARD: the executeCall() method will have to be invoked; it is a public method that can

be invoked using the FragmentPayment object. Below is an example image showing how to

implement an Actvity side button and how to create the respective onClickListener to allow

the method indicated above to be invoked. On the XML layout side, there will be a

personalized button below the FrameLayout created previously:

Button customPayButton = findViewById(R.id.custom_pay_button); 

customPayButton.setOnClickListener(new View.OnClickListener() { 

@Override 

public void onClick(View v) { 

fragmentPayment.executeCall(); 

} 

}); 
… 



8.9 Examples of the code 

FragmentPayment integration 

public class MainActivity extends AppCompatActivity { 

private FragmentPayment.ResultExecutePaymentCallback resultExecutePaymentCallback; 

@Override 

protected void onCreate(Bundle savedInstanceState) { 

super.onCreate(savedInstanceState); 

setContentView(R.layout.activity_main); 

initCallBackSdkPayment(); 

final FragmentPayment fragmentPayment = new FragmentPayment( 

FragmentPayment.PaymentType.CREDIT_CARD, 

ViewType.COMPACT, 

resultExecutePaymentCallback 

); 

FragmentManager fragmentManager = getSupportFragmentManager(); 

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction(); 

fragmentTransaction.add(R.id.container,fragmentPayment).addToBackStack(null).commit() 

; 

ApiService.setEndPointAndLicence("endpoint","x-licence-key"); 
ApiService.paymentConfiguration(“paymentID”,”countryCode”,”amount”); 

Button customPayButton = findViewById(R.id.custom_pay_button); 

customPayButton.setOnClickListener(new View.OnClickListener() { 

@Override 

public void onClick(View v) { 

fragmentPayment.executeCall(); 

} 

}); 

} 

private void initCallBackSdkPayment() { 

resultExecutePaymentCallback = new FragmentPayment.ResultExecutePaymentCallback() { 

@Override 

public void onExecuteSuccess() { 

Toast.makeText(getApplicationContext(), "Success", 

Toast.LENGTH_LONG).show(); 

} 



@Override 

public void onExecuteFailure() { 

Toast.makeText(getApplicationContext(), "Failure", 

Toast.LENGTH_LONG).show(); 

} 

}; 

} 

} 

PaymentSelectorActivity integration 

public class MainActivity extends 

AppCompatActivity { @Override 

protected void onCreate(Bundle savedInstanceState) { 

super.onCreate(savedInstanceState); 

setContentView(R.layout.activity_main); 

ApiService.setEndPointAndLicence("endpoint","x-licence-key"); 

ApiService.paymentConfiguration(“paymentID”,”countryCode”,”amount”); 

Intent intent=new 

Intent(context,PaymentSelectorActivity.class) 

startActivity(intent) 

} 

} 



8.10    Examples of Layouts 

CreditCard 

Default 

Compact 

Inline 



9 Payment outcomes 

After payment execution, as indicated in the InitPayment call, the outcome of the transaction is 

returned with two methods: 

• Frontend: frontend outcome depends of the integration type

o Easy checkout: after processing the payment, Worldline performs a REDIRECT to the

url specified by the merchant in redirect_successUrl (or in redirect_failureUrl if the

transaction has failed).

o Smart checkout and API checkout: the render of the outcome will trigger an event

on the web page with the iframe, which indicates the end of the transaction. The

event is triggered with a script that invokes the window.postMessage()method.

That is: 

window.top.postMessage(‘axepta_SUCCESS_message’, ‘*’); 

if the transaction is concluded successfully, 

or window.top.postMessage(‘axepta_FAILURE_message’, ‘*’);
if the transaction fails. 

This event can be intercepted by a listener on the web page. In any case, the details on the transaction 

will only be on the backend. 

o In-App checkout (Android) and In-App checkout (iOS): please see respective

paragraphs.

• Backend: Worldline makes a server to server call to the url specified by the merchant in

callback_url parameter of the initPayment call
An example of the parameters returned is shown below (format JSON): 

{ 

"integration_type": "WIZARD", 

"integration_name": "Easy", 

"mid": "BNLP TEST ALIAS", 

"paymentId": 

"76b5806696f823837a030cbb2c708c6108ce79961bf0d123519a055d75bdb6a1", 

"instrument": "CREDITCARD", 

"operation_type": "PAYMENT", 

"amount": "0.01", 

"currency": "EUR", 

"language": "IT", 

"transaction_type": "PURCHASE", 

"addresses": [], 

"products": [], 

"notification": { 

"area_code": "+39", 

"name": "", 

"email": "", 

"smartphone": "+39 " 

}, 



"additionals": [], 

"callback_url": "https://webhook.site/45cf1cbd-0885-4845-980c- 

9e750e104b01", 

"transactionAt": "2020-11-10T12:03:09.409Z", 

"card_brand_desc": "Visa", 

"service_type_desc": "Debit Card", 

"product_priority_code": "", 

"shopID": "jSf9ppMWy7ZNvw943iBVRcXcHKsQFVwq", 

"tid": "08000001", 

"transaction_status": "PG_000", 

"payInstrToken": null, 

"payCardToken": null, 

"maskedPan": "411111******1111", 

"brand": "VISA", 

"transactionID": "3087001610827263", 

"card_expiration": "1023", 

"authCode": "125996", 

"xid": "MDAzMTU2NzQ5MzYxMjkzNzY3OTA=", 

"transaction_code": "PG_01010", 

"description_status": "TRANSAZIONE OK" 

} 

IMPORTANT: 

• Verify is a server to server call that can be used ONLY AFTER the callback, as an additional

check of the status of the transaction.

• If the callback is not received, this means that the customer has decided not to pay or has not

managed to pay or, though less likely, that an error has occurred in processing the payment

and that, AT THE SAME TIME, this error has not been received on the callback. These two

cases can be managed with the merchant-side Verify, but it should be after a long period of

time (for example, an hour), in which, for example, the operation can be closed and the

purchase indicated as “failed”.

• it is available a feature that, by default, if callback is not acknowledged (i.e. 200 OK by the

merchant), then callback is resended again after 1 hour for a maximum of 24 times if a 200

OK is not received by Worldline. “1 hour” can be modified and “24 times” can be modified, if

needed, contacting ecommerce support.

• The system has a recurring job. This job analyses any payment in pending status and manage

to cancel it, if needed. In this case, a callback is sent to the merchant endpoint defined for that

payment in order to notify that the payment is canceled. By default, the job is scheduled each

30 minutes and it takes payment older than 30 minutes, but those values can be modified if

needed, contacting ecommerce support.



 

 

10   After the payment 
This section describes the possible server to server calls that may be useful to the merchant after 

making the payment. 

10.1   Credit 
For a successful PURCHASE transaction, you can return an amount in order to return part or the entire 

amount paid into your wallet. 

The payment ID to be included in input is that of the transaction already performed and on which the 

return is to be made. 

 

 

• Initialize a PURCHASE type payment 

• Perform an execute1 to make the payment and a transactionID field will be returned in the 

response 

 

 

1 It is intended in general that the payment be made using one of the integration methods provided by Worldline:  API, Easy, Smart, In-App. 

WORLDLINE 



• Perform a Credit using the transactionID, to return a credit of a certain amount on a payment1

The specifications of the Return call for PURCHASE type transactions are shown below: 

  METHOD   POST 

 ENDPOINT  {{host server to server}}/api/v1/payments/credit 

HEADERS 

 “Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“x-license-key": <-- API License Key  --> 

(BODY) 
PARAMETERS 

{ 
"paymentId": "< – payment ID -->", 
"transactionID": "3079887950480832", 
"amount": "2.36" 

} 

RESPONSE 

{ 
"maskedPan": "411111******1111", 
"brand": "VISA", 
"authCode": "113973", 
"card_expiration": "1023", 
"mid": "a", 
"amount": "10.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": "<--PAYMENTID-->", 
"transactionAt": "2019-11-29T15:56:22.561Z", 
"operation_type": "CREDIT", 
"shopID": "hUiCdUtkvpNeI9nM16v7NhtMXKfA4zx6", 
"transaction_status": "PG_000", 
"transaction_code": "01010", 
"description_status": "TRANSACTION OK", 
"transactionID": "3079905910425225", 
"pendingAmount": "5455" 

} 

RESPONSE KO 
{ 

"mid": "a", 
"amount": "10.01", 

1
 A return (Credit) of a transaction charged previously (Confirm) can also be performed. For further details, see the relevant section. Note 

that the amount to be returned must be consistent with the amount of the Purchase or Confirm performed previously. 



"currency": "EUR", 
"tid": "08000001", 
"paymentId": “<--PAYMENTID-->“, 
"transactionAt": "2019-11-29T15:56:22.561Z", 
"operation_type": "CREDIT", 
"shopID": "hUiCdUtkvpNeI9nM16v7NhtMXKfA4zx6", 
"transaction_status": "PG_001", 
"transaction_code": "00001", 
"description_status": "Generic error." 

} 

ERROR RESPONSE 

{ 
"code": 1118, 
"message": "The data are necessary." 

} 



10.1.1 Example of Java Unirest 

10.1.2 Example of PHP Http Request 

HttpResponse<String> response = Unirest.post("https://pay-test.axepta.it/api/v1/payments/credit") 
.header("Content-Type", "application/json") 
.header("x-license-key", "XXXXXXX-0ERMYE0-MP683C5-9G0Q976") 
.header("cache-control", "no-cache") 
.body("{\n\t\"paymentId\": 

\"c5121109fd86460de50c33526ab7cc07:20454330610d34d156698b12b070cef7be4b948219ffbf1a15cff30ab  
32a94f93\",\n \"transactionID\": \"3079887950480832\" ,\n \"amount\": \"1.00\"\n}") 

.asString(); 

<?php 

$request = new HttpRequest(); 
$request->setUrl('https://pay-test.axepta.it/api/v1/payments/credit'); 
$request->setMethod(HTTP_METH_POST); 

$request->setHeaders(array( 
'cache-control' => 'no-cache', 
'x-license-key' => 'XXXXXXX-0ERMYE0-MP683C5-9G0Q976', 
'Content-Type' => 'application/json' 

)); 

$request->setBody('{ 
"paymentId": 

"c5121109fd86460de50c33526ab7cc07:20454330610d34d156698b12b070cef7be4b948219ffbf1a15cff30ab3  
2a94f93", 
"transactionID": "3079887950480832", 

"amount": "1.00" 
}'); 

try { 
$response = $request->send(); 

echo $response->getBody(); 
} catch (HttpException $ex) { 

echo $ex; 
}



10.1.3 Example of Node Request 

var request = require("request"); 

var options = { method: 'POST', 
url: 'https://pay-test.axepta.it/api/v1/payments/credit', 
headers: 
{ 'cache-control': 'no-cache', 

'x-license-key': 'XXXXXXX-0ERMYE0-MP683C5-9G0Q976', 
'Content-Type': 'application/json' }, 

body: 

paymentId: 
'c5121109fd86460de50c33526ab7cc07:20454330610d34d156698b12b070cef7be4b948219ffbf1a15cff30ab32 
a94f99', 
transactionID: ‘3079887950480832’, 

amount: '1.00' }, 
json: true }; 

request(options, function (error, response, body) { 
if (error) throw new Error(error); 

console.log(body); 
}); 



10.2 Void 
For a successful AUTH transaction, you can return an amount in order to return part or the entire 

amount paid into your wallet. 

The payment ID to be entered in input is that of the transaction already performed and on which 

the return is to be made. 

• Initialize an AUTH payment

• Perform an execute1 to make the authorization and a transactionID field will be returned in

the response

• Perform a Void using the transactionID, to return a credit of a certain amount on an already

authorized payment2

1 It is intended in general that the payment be made using one of the integration methods provided by Worldline:  API, Easy, Smart, In-App. 
2 Note that the amount to be returned must be consistent with the remaining preauthorized amount, for example, if a partial 
Confirm has been performed previously 

WORLDLINE 



   The specifications of the Return call for an AUTH transaction are shown below: 

METHOD POST 

ENDPOINT {{host server to server}}/api/v1/payments/void 

  HEADERS 
 “Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“x-license-key": <-- API License Key --> 

(BODY) 
PARAMETERS 

{ 
"paymentId": "< – Payment ID -->", 
"transactionID": "3079887950480832", 
"amount": "2.36" 

} 

RESPONSE 

{ 
"maskedPan": "411111******1111", 
"brand": "VISA", 
"authCode": "727958", 
"card_expiration": "1023", 
"mid": "a", 
"amount": "0.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": “<--PAYMENTID-->“, 
"transactionAt": "2019-11-29T16:01:45.686Z", 
"operation_type": "VOID", 
"shopID": "dQUoilwIBi3LRs4nrnbGeIWjwfj4Zuhd", 
"transaction_status": "PG_000", 
"transaction_code": "01010", 
"description_status": "TRANSACTION OK" 

} 

RESPONSE KO 

{ 
"mid": "a", 
"amount": "10.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": "<-PAYMENTID->", 
"transactionAt": "2019-11-29T16:01:45.686Z ", 
"operation_type": "VOID", 
"shopID": " dQUoilwIBi3LRs4nrnbGeIWjwfj4Zuhd ", 
"transaction_status": "PG_001", 
"transaction_code": "00001", 
"description_status": "Generic error." 
} 



 

 

 

 
 

ERROR RESPONSE 

 
{ 

"code": 1118, 
"message": "The data are necessary." 

} 



10.3 Confirm 
For an AUTH transaction, you can confirm a specific amount in order to make the payment for a 

part or the entire amount. 

The payment ID to be entered in input is that of the transaction already performed and on which 

the confirmation is to be made. 

• Initialize an AUTH payment

• Perform an execute1 to make the authorization and a transactionID field will be returned in

the response

• Perform a Confirm using the transactionID, to perform the credit of a certain amount on an

already authorized payment2

1 It is intended in general that the payment be made using one of the integration methods provided by Worldline:  API, Easy, Smart, In-App. 
2 Note that the amount to be confirmed must be consistent with the remaining preauthorized amount, for example, if a partial Void has 
been performed previously.

WORLDLINE 



   The specifications of the Confirm call for an AUTH transaction are shown below: 

  METHOD   POST 

  ENDPOINT  {{host server to server}}/api/v1/payments/confirm 

  HEADERS 
 “Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“x-license-key": <-- API License Key --> 

(BODY) 
PARAMETERS 

{ 
"paymentId": "< – payment ID -->", 
"transactionID": "3079887950480832", 
"amount": "2.36" 

} 

RESPONSE 

{ 
"maskedPan": "411111******1111", 
"brand": "VISA", 
"authCode": "727958", 
"card_expiration": "1023", 
"mid": "a", 
"amount": "1.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": “<--PAYMENTID-->“, 
"transactionAt": "2019-11-29T16:03:36.279Z", 
"operation_type": "CONFIRM", 
"shopID": "dQUoilwIBi3LRs4nrnbGeIWjwfj4Zuhd", 
"transaction_status": "PG_000", 
"transaction_code": "01010", 
"description_status": "TRANSACTION OK", 
"transactionID": "3079905990598769", 
"pendingAmount": "8357" 

} 

RESPONSE KO 

{ 
"mid": "a", 
"amount": "10.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": "<-PAYMENTID->", 
"transactionAt": "2019-11-29T16:03:36.279Z", 
"operation_type": " CONFIRM ", 
"shopID": " dQUoilwIBi3LRs4nrnbGeIWjwfj4Zuhd", 
"transaction_status": "PG_001", 



"transaction_code": "00001", 
"description_status": "Generic error." 

} 

ERROR RESPONSE 

{ 
"code": 1118, 
"message": "The data are necessary." 

} 

IMPORTANT: a return (Credit) of a previously charged transaction (Confirm) can also be made, in fact, 
the latter is as though it has become a Purchase. In this case, note must be taken of the transactionID 
returned by the Confirm and used for the Credit. Example: 

First transaction (Auth): 

• output

o TransactionID=aaa

Confirm of the Auth: 

• Input

o TransactionID=aaa

• Output

o TransactionID=bbb

Credit of the Confirm: 

• Input

o TransactionID=bbb

10.4 Confirm with automatic void of the residual 

It is possible to partly confirm amount, and void the residual, using “voidEnabled” attribute set to 

true. 

METHOD POST 

ENDPOINT {{host server to server}}/api/v1/payments/confirm 

HEADERS 
“Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“x-license-key": <-- API License Key --> 

(BODY) { 



 

 

 

PARAMETERS 
VOID 

"paymentId": "< – payment ID -->", 
"transactionID": "3079887950480832", 
"amount": "2.36", 
"voidEnabled": true 

} 

 
 
 
 
 
 
 

 
RESPONSE 
VOID 

{ 
"maskedPan": "411111******1111", 
"brand": "VISA", 
"authCode": "727958", 
"card_expiration": "1023", 
"mid": "a", 
"amount": "1.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": “<--PAYMENTID-->“, 
"transactionAt": "2019-11-29T16:03:36.279Z", 
"operation_type": "CONFIRM", 
"shopID": "dQUoilwIBi3LRs4nrnbGeIWjwfj4Zuhd", 
"transaction_status": "PG_000", 
"transaction_code": "PG_01010", 
"description_status": "TRANSACTION OK", 
"transactionID": "3079905990598769", 
"voidedAmount ": "8357" 

} 

 
 
 
 
 
 

RESPONSE KO 

{ 
"mid": "a", 
"amount": "10.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": "<-PAYMENTID->", 
"transactionAt": "2019-11-29T16:03:36.279Z", 
"operation_type": "CONFIRM", 
"shopID": " dQUoilwIBi3LRs4nrnbGeIWjwfj4Zuhd", 
"transaction_status": "PG_001", 
"transaction_code": "PG_00001", 
"description_status": "Generic error." 

} 

 
 

ERROR RESPONSE 

 { 
"code": 1118, 
"message": "The data are necessary." 

} 

 

Where voidedAmount is the amount of the void operation, expressed in decimal. 



10.5 Verifying a Transaction (verify) 
In Server-To-Server mode, this method is used to verify the status of a payment. The outcome of the 

transaction is indicated in the callback (as explained in previous sections), Verify is only to be used 

in some very special cases. 

The Verify function requires the payment ID (i.e. PaymentID) to be included in the parameters of the 

endpoint. 

• Initialize a payment

• Perform an execute1 to make the payment

• Perform a Verify, which will respond with the status of the payment.

1 It is intended in general that the payment be made using one of the integration methods provided by Worldline:         API, Easy, Smart, In-App. 

WORLDLINE 



   The specifications of the payment verification call are shown below: 

METHOD GET 

ENDPOINT {{host}}/api/v1/payments/verify/{{PaymentID}} 

HEADERS “Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“x-license-key": <-- API License Key --> 

RESPONSE { 
"maskedPan": "455777******3335", 
"brand": "VISA", 
"authCode": "317676", 
"card_expiration": "1023", 
"mid": "012", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": 

"a27ca5d4ee424e2086c57d647fef12429af2f57c0943a082519a055d75bdb6a1", 
"transactionAt": "2020-02-13T12:44:16.315Z", 
"operation_type": "VERIFY", 
"shopID": "1jEyAMdH9hdj2jiAMCHxYysNOoATuW0l", 
"transaction_status": "PG_000", 
"transaction_code": "01010", 
"description_status": "TRANSACTION OK", 
"transactionID": "3077722880769169" 

} 

RESPONSE KO { 
"mid": "a", 
"amount": "10.01", 
"currency": "EUR", 
"tid": "08000001", 
"paymentId": "<-PAYMENTID->", 
"transactionAt": "2020-02-13T12:44:16.315Z", 
"operation_type": " VERIFY", 
"shopID": " 1jEyAMdH9hdj2jiAMCHxYysNOoATuW0l", 
"transaction_status": "PG_001", 
"transaction_code": "00001", 
"description_status": "Generic error." 

} 
ERROR 
RESPONSE 

{ 
"code": 1118, 
"message": "The data are necessary." 

} 



10.6 Making one-click payments 

One-click payments is an optional service that it could be activated on request. This service allows to 

store card data and use them for successive payments (without insert them again in the form). 

The service consists of three phases: 

1. Configuration

2. Card tokenization

3. Payment using token

10.6.1 Phase 1 - Configuration 
Worldline will activate the tokenization feature on merchant request. Merchant has to decide if 

wants: 

• Explicit tokenization (only for Easy, Smart, In-app checkouts): in this scenario, it is the card

holder that explicitly checks the corresponding checkbox in order to get the card tokenized for

future payments. 

• Implicit tokenization: in this scenario, the card tokenization it is totally choice by the

merchant. The card holder could be advised by a message of the merchant in the ecommerce

page or by a message in Axepta payment form (this message is configured by Axepta following

merchant requirement). Implicit tokenization is also the only possible case for API Checkout.



10.6.2 Phase 2 - Card tokenization 
There are some parameters of the initPayment method, needed necessary to understand regarding 

tokenization: 

• “tokenize” is a boolen (true/false) parameter. It is the “consensus” from card holder in order

to tokenize the card. The usage of this parameter is the following:

o tokenize=true in input of input of the initPayment if you are configured as

implicit tokenization (this is valid for all types of checkouts) 

o No need to use tokenize parameter in case of explicit tokenization, because Phey will

take the card holder’s consensus from the flag in the from (this is valid Easy, Smart

or In-app checkouts, in fact for the API checkout the explicit tokenization does not

have sense, because card holder gives the consensus always on the merchant

website)

• “payInstrToken” is the name of the user wallet and it is also the ID connecting successive

transactions. For example, it could be the customer ID on merchant side or customer email.

It is in input of the initPayment and in output of the payment (i.e. execute and/or callback). It

could be used in input for the first transaction, otherwise it would be randomly generated

by Worldline. For successive transactions, it must be used in input on initPayment, otherwise

first and successive transactions would not be connected each other’s. In successive

transactions, it allows to show stored cards of the card holder/user.

• “payCardToken” is the card token. It is in input of the initPayment and in output of the

payment (i.e. execute and/or callback). If the transaction is a “first transaction”, then

payCardToken would be an output parameter generated by Axepta. If you are submitting a

successive transaction in the “one-click payments”, then you can optionally use

payCardToken as an input parameter. If you do, you are forcing the system to pay with that

tokenized card instead of let the cardholder to choose.



 

 

• “txIndicatorType” is the type of tokenized transaction. It is an input of initPayment. 

In the case of a first transaction txIndicatorType would not be specified. In the case of a successive

 transaction of type “one-click payments”, then txIndicatorType=UNSCHEDULED. 

 

Following, there is an example of the initPayment of a first transaction (implicit tokenization case): 

 

 
METHOD 

 
POST 

 
ENDPOINT 

 
{{host server to server}}/api/v1/payment/initPayment 

 
 

HEADERS 

 
“Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“X-license-key": <-- API License Key --> 

 
(BODY) 
PARAMETERS 

{ 
"transaction_type": 
"PURCHASE", 
"transaction_timeout": "30000", 
"tokenize": true, 
"payInstrToken": "test@test.it", 
"shopID": "shopIDprova12345", 
"currency": "EUR", 
"language": "IT", 
"amount": "84.58", 

} 

 
 

RESPONSE 

{ 
"code": 200, 
"message": "SUCCESSFULLY", 
"paymentID": <-- Payment ID --> 

} 

mailto:test@test.it


Then, the card holder would execute the payment. This action could be done in different ways, 

it depends on which type of checkout is used by the merchant (Easy, Smart, etc)1. 

In addition, if implicit tokenization is disabled, it is up to the card holder the choice to tokenize 

the card or not. 

If the transaction: 

• is successfully, then the card is tokenized and VERIFIED. In this case, the user could make

one-click payments without insert card data again.

1 If you are using API Checkout, then you must specify “tokenize=true” in the execute method. 



• is failed, then the card would be temporary tokenized as PENDING. In this case, merchant

would receive payInstrToken but the user needs to insert again card data for future payments.

In this case merchant will not receive payCardToken.

Following, there is an example of success transaction (tokenized card), where payCardToken is randomly 

generated: 

RESPONSE 
{ 

"mid": "merchantID", 
"instrument": "CREDITCARD", 
"operation_type": "PAYMENT", 
"isHTML": false, 
"transactionAt": "2019-11-29T15:17:19.373Z", 
"tid": "08000001", 
"shopID": "AfqhuojN7LCJw6UstZMVoPwo2QGNX8N7", 
"transaction_status": "PG_000", 
"token": "nloS0bPqZq8F27wcH4a5LNoOd2XVM55v", 
"maskedPan": "411111******1111", 

"brand": "VISA", 

"transactionID": "3079905680585024", 
"payInstrToken": "test@test.it", "payCardToken": 
"6UstZMVo6UstZPwo2QGNX", "authCode": 
"288380", 
"xid": "MDAzMzMzODI4MzMxMjIzOTU2Nzc=", 
"transaction_code": "01010", "description_status": 
"TRANSAZIONE OK" 

} 

In case of explicit tokenization, if the end user did not accept to save card data, then the output of 

the callback would contain "payCardToken": null 

10.6.3 Phase 3 - Payment using token 
Assuming the first payment and tokenizing are successfully, then the merchant could initiate a “one-

click” payment. In order to do that, merchant has to call initPayment method with: 

• payInstrToken of the user

• payCardToken, optionally if you want to force the payment with a tokenized card of the user

instead to let the user choose which card on Axepta form

• txIndicatorType=UNSCHEDULED

mailto:test@test.it
mailto:test@test.it


METHOD POS 

ENDPOINT {{host server to server}}/api/v1/payment/initPayment 

HEADERS 
“Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“X-license-key”: <-- API License Key --> 

(BODY) PARAMETERS 

{ 
"transaction_type": "PURCHASE", 
"transaction_timeout": "30000", 
"payInstrToken": "test@test.it", 
"payCardToken": "6UstZMVo6UstZPwo2QGNX", 
"txIndicatorType": "UNSCHEDULED", 
"shopID": "shopIDprova12345", 
"currency": "EUR", 
"language": "IT", 
"amount": "84.58", 

} 

RESPONSE 

{ 
"code": 200, 
"message": "SUCCESSFULLY", 
"paymentID": <-- Payment ID --> 

} 

Then, the card holder would execute the payment. This action could be done in different ways, it 

depends on which type of checkout is used by the merchant (Easy, Smart, etc)1. 

 1 If you are using API Checkout, then you must specify payInstrToken and payCardToken in the execute  
method. See Cap. API checkout 

mailto:test@test.it
mailto:test@test.it


 

 

10.7 Recurring payments (scheduled by the merchant) 
 

Recurring payments is an optional service that it could be activated on request. This service allows to 

store card data and use them for successive payments initiated by the merchant in certain period of 

times (for example a membership subscription each month). 

 

In particular, here we describe the case in which the merchant wants to schedule the transactions. 

 

Before to read this paragraph, you need to read carefully the Par. “Making one-click payments” in 

order to understand the tokenization topic. 

 

The service consists of three phases: 

1. Configuration 

2. Card tokenization 

3. Payment using token 

 

10.7.1 Phase 1 - Configuration 

Please read respective paragraph of Par. “Making one-click payments”. 

 

10.7.2 Phase 2 - Card tokenization 
Please read respective paragraph of Par. “Making one-click payments”. There is not any difference. 

 

10.7.3 Phase 3 - Payment using token 
Assuming the first payment and tokenizing are successfully, then the merchant could initiate a 

“recurring payment”. In order to do that, merchant has to call initPayment method with: 

• payInstrToken of the user 

• payCardToken, optionally if you want to force the payment with a tokenized card of the user 

instead to let the user choose which card on Axepta form 

• txIndicatorType=RECURRENT 

 

  METHOD   POST 

  ENDPOINT  {{host server to server}}/api/v1/payment/initPayment 

  HEADERS 
 “Content-type”: application/json 

“Authorization”: Bearer <-- AccessToken --> 
“X-license-key": <-- API License Key --> 



(BODY) PARAMETERS 

{ 
"transaction_type": "PURCHASE", 
"transaction_timeout": "30000", 
"payInstrToken": "test@test.it", 
"payCardToken": "6UstZMVo6UstZPwo2QGNX", 
"txIndicatorType": "RECURRENT", 
"shopID": "shopIDprova12345", 
"currency": "EUR", 
"language": "IT", 
"amount": "84.58", 

} 

RESPONSE 

{ 
"code": 200, 
"message": "SUCCESSFULLY", 
"paymentID": <-- Payment ID --> 

} 

Then, the merchant would execute the payment. This action must be done with the API call called 

execute. 

mailto:test@test.it
mailto:test@test.it


10.8 Deleting a tokenized card 

There are different ways to delete a tokenized card: 

1. By the card holder. Merchant makes an initPayment specifying payInstrToken parameter.

Then, merchant calls a payment form (either Easy, Smart or In-app checkout) and shows it to

the cardholder. If cardholder has previously tokenized one or more cards, then he will view a

form like this

In this case, cardholder can delete the tokenized card(s) using the corresponding button (X) 

2. By the merchant. Merchant can use a server to server method in order to delete a tokenized

card on behalf of the cardholder. Then, Merchant is responsible of deleting a tokenized card.

The specifications of the call are shown below:

METHOD DELETE 

ENDPOINT {{host}}/api/v1/payments/card/payInstrToken→/payCardToken→

HEADERS 
“Content-type”: application/json 
“Authorization”: Bearer <-- AccessToken --> 
“x-license-key": <-- licenza d’uso --> 

RESPONSE 
{ 

"code": "200" 
} 



11 Error codes 

Call responses for status 200, i.e. those which were successful, were described previously. For error 

codes, see the document: 

“WORLDLINE_ListaCodiciEsitoTransazione”. 



12 Testing environment information 

General information for the test environment is provided below. Specific information for the test 
merchant is communicated separately by Worldline. 

Reference HOST: 

Checkout Testing 
API https://pay-test.axepta.it 
Easy https://pay-test.axepta.it/sdk 

Smart https://pay-test.axepta.it/sdk 

In-App (SDK iOS) https://pay-test.axepta.it 
In-App (SDK Android) https://pay-test.axepta.it 

The cards used for the tests are indicated below. 

N.B. Where specified, the correct expiry date and/or CVV code must be indicated otherwise the 

transaction will fail. 

PAN Scheme Expiry Cvv Enrstatus Authstatus Authorization 
outcome 

4557773333333335 Visa - - Y Y OK 

4557772222222229 Visa - - Y A OK 

4111111111111111 Visa 10/2023 - N - OK 

4555000000000001 Visa - - N - OK 

4111111112225555 Visa - - N - OK 

4011514444441116 VisaElectron - - N - OK 

4011519992222222 VisaElectron - - N - OK 

4005000000000007 VisaDebit 10/2023 - N - OK 

4005004455555556 VisaDebit - - N - OK 

5430132222222226 Mastercard - - N - OK 

5893535544444429 Mastercard - - N - OK 

5790640100000005 Mastercard - - N - OK 

5430131234567891 Mastercard - - Y N KO 

5548535889622125 Mastercard - - N - OK 

5401172222222227 Mastercard - - Y Y OK 

5430132222222226 Mastercard - - N - OK 

5548536000000126 Mastercard - - Y Y OK 

5264921111111115 MastercardDebit - 555 N - OK 

5545910000000019 MastercardDebit - - Y N KO 

5020639451965933 Maestro - - Y Y OK 

5893535596092423 Maestro - - Y A KO 



where: 

• enrStatus represents the status of registration of the card to the 3D Secure service

➢ Y – Authentication available;

➢ N – Holder not registered with the service;

➢ U – Authentication not possible;

➢ E – Error.

• AuthStatus represents the authorization outcome of the card with the 3D Secure service

➢ Y – Authenticated;

➢ A – Attempted authentication;

➢ N – Holder not authenticated;

➢ U – Authentication not possible.

The testing environment includes some test cases through which the behaviour of the solution can 

be simulated when some conditions that would invalidate the transaction occur. They respond to the 

following Pan / Amount combinations: 

PAN Amount Expiry Outcome Description 

4557773333333335 
5401172222222227 
4557772222222229 
5548536000000126 
5020639451965933 

101,00 any PG_01045 Authorization denied 

102,00 any PG_01058 Incorrect merchant code 

103,00 any PG_01057 Invalid card 

104,00 any PG_01086 Holder not enabled for this 
operation 

105,00 any PG_01089 Frequency limit exceeded 

106,00 any PG_01180 Stolen card 

107,00 any PG_01038 Format error 

108,00 any PG_01080 Contact issuer 

109,00 any PG_01078 Suspected fraud 

5430132222222226 
4111111111111111 
4011519992222222 
4005000000000007 
5264921111111115 

103,00 any PG_01060 Insufficient funds 

104,00 any PG_01086 Holder not enabled for this 
operation 

105,00 any PG_01089 Frequency limit exceeded 

5401172222222227 
5264921111111115 

> 200 any PG_01060 Insufficient funds 

4111111111111111 
4005000000000007 

Any different 
from above 

Any 
differe
nt 
from 
10/23 

PG_01018 Card expired 



 

 

 

12.1   Testing 3DS 2.x 
 

If merchant is enabled to 3DS 2.x, then it needed to make some specific tests. In particular you can 

follow the below table in order to test some 3DS 2.x scenarios. 

 

 
PAN 

 
Scheme 

 
Expiry 

 
cvv 

 
transStatus 

 
Authorization outcome 

401200103627555
6 

VISA 10/23 any U               UNABLE 

525599999999999
2 

MC 10/23 any U                UNABLE 

 
401200103844333

5 

 
VISA 

 
10/23 

 
any 

 
Y 

 

RISK BASED   

AUTHENTICATION 

(FRICTIONLESS) 

 
545301000007386

6 

 
MC 

 
10/23 

 
any 

 
Y 

RISK BASED 

AUTHENTICATION 

(FRICTIONLESS) 

 
525610327009653

2 

 
MC 

 
10/23 

 
any 

 
Y 

 

RISK BASED 
AUTHENTICATION 

(FRICTIONLESS) 

 

482498327009650
9 

 
VISA 

 
10/23 

 
any 

 
Y 

 
RISK BASED 

AUTHENTICATION 

(FRICTIONLESS) 

 
401200103685333

7 

 
VISA 

 
10/23 

 
any 

 
N 

 
REFUSED BY THE PAYMENT 

GATEWAY 

 
545301000007368

4 

 
MC 

 
10/23 

 
any 

 
N 

 
REFUSED BY THE PAYMENT 

GATEWAY 

 
401200103714111

2 

 
VISA 

 
10/23 

 
any 

 
C 

FULL 3DSecure 
(CHALLENGE) 

Fill with 111111 

 
545301000007320

5 

 
MC 

 
10/23 

 
any 

 
C 

FULL 3DSecure 

(CHALLENGE) 
Fill with 111111 



13 How to move to Production environment 

The following activities must be carried out starting from the time at which Worldline and the 

merchant agreed on the release to Production: 

• Change all the endpoints from https://pay-test.axepta.it to https://pay.axepta.it, i.e. follow

the information given in the table below

Checkout Testing Production 

API https://pay-test.axepta.it https://pay.axepta.it 

Easy https://pay-test.axepta.it/sdk https://pay.axepta.it/sdk 
Smart https://pay-test.axepta.it/sdk https://pay.axepta.it/sdk 

In-App (SDK iOS) https://pay-test.axepta.it https://pay.axepta.it 

In-App (SDK Android) https://pay-test.axepta.it https://pay.axepta.it 

• Generate another Access Token, to be used in the Production environment

o By accessing the URL https://pay.axepta.it/access from a browser session in

“incognito mode” 

o Using the Username and Password provided by Worldline

o Use this new Access Token for the Production environment

• Replace all the License Keys (i.e. the Server to Server key and each of the special keys for the

single integration method chosen).

https://pay-test.axepta.it/
https://pay.axepta.it/
https://pay.axepta.it/access


14 Merchant-side PCI data security information 
The PCI DSS standard defines the compliance requirements that merchants must fulfil. The table 

below lists these requirements (Self-Assessment Questionnaire SAQ and Report on Compliance RoC) 

for each type of technical integration solution that the merchant decides to implement. 

Product Technical 
solution 

Description Compliance 
(≤6,000,000 
transactions/year) 

Compliance 
(> 6,000,000 
transactions/year) 

Easy 
Checkout 

Redirect 
SDK 

The user is redirected to the 
AXEPTA payment page and the 
card data can be entered on the 
same page 

SAQ A RoCA 

Smart 
Checkout 

JS SDK The card data entry form is 
presented by the merchant and 
the data is transmitted directly to 
the payment gateway without 
interaction with the merchant’s 
server 

SAQ A-EP RoCA-EP 

In-App 
Checkout 

Mobile SDK SDK for the integration of payment 
services on mobile applications 

SAQ A RoCA 

API 
Checkout 

Server to 
server 

Card data is entered on the 
merchant page and the card data is 
managed by the merchant’s server 

SAQ D RoC 

Where, in principle, the criteria are as follows: 

• SAQ A / RoCA = the entire payment page is managed by Worldline

• SAQ A-EP / RoCA-EP = The merchant's site does not historicize, process or transmit card data,

but controls how the data is collected

• SAQ D / RoC = the merchant's site historicizes, processes or transmits card data


	1 DOCUMENT VERSIONS
	1 Introduction
	1.1 Checkout solutions
	1.2 Payment instruments
	1.3 Additional services
	1.3.1 Saving payment data
	1.3.2 Payment notifications
	1.3.3 Customer notifications
	1.3.4 Easy Checkout personalization
	1.3.5 Easy Checkout optional forms

	1.4 Support information
	2 Initializing a payment
	2.1 Payment Initialization (initPayment)
	2.1.1 Example of Java Unirest integration
	2.1.2 Example of PHP http Request integration
	2.1.3 Example of Node Request integration

	3 Types of integration
	4 API checkout
	4.1 Payment execution (execute)
	4.1.1 Example of Java Unirest integration
	4.1.2 Example of PHP Http Request integration
	4.1.3 Example of Node Request integration

	4.2 Payment execution with 3DS
	window.top.postMessage(‘axepta_ SUCCESS _message’, ‘*’);

	4.3 Direct Payment (directPayment)
	5 Easy checkout
	6 Smart checkout
	6.1 Smart layout management
	axeptaClient.preparePayment(‘←-PaymentID-→, ‘←- Layout -→’);
	axeptaClient.preparePayment('←- PaymentID -->', 'compact');
	axeptaClient.preparePayment('←- PaymentID -->', 'inline');
	axeptaClient.preparePayment('←- PaymentID -->', 'buttonless');

	6.2 Smart layout personalization
	7 In-App checkout (SDK iOS)
	7.2 Introduction
	7.3 Adding SDK to the project
	7.4 SDK Configuration
	7.5 SDK implementation
	7.5.1 Payment Context Integration
	7.5.2 Widget integration
	7.5.3 Integration by direct call on a specific payment method
	7.5.4 Setting the Credit Card view in direct payments

	8 In-App checkout (SDK Android)
	8.1 Minimum Requirements
	8.2 Adding dependency for SDK
	8.3 SDK configuration
	8.4 Graphic personalization
	8.5 SDK Integration
	8.6 PaymentSelectorActivity Integration
	8.7 FragmentPayment Integration
	8.7.1 Implementation in an Activity
	8.7.2 Implementation in a Fragment

	8.8 Direct call integration
	8.9 Examples of the code
	8.10    Examples of Layouts
	9 Payment outcomes
	10   After the payment
	10.1   Credit
	10.2 Void
	10.3 Confirm
	10.4 Confirm with automatic void of the residual
	10.5 Verifying a Transaction (verify)
	10.6 Making one-click payments
	10.6.1 Phase 1 - Configuration
	10.6.2 Phase 2 - Card tokenization
	10.6.3 Phase 3 - Payment using token

	10.7 Recurring payments (scheduled by the merchant)
	10.7.1 Phase 1 - Configuration
	10.7.2 Phase 2 - Card tokenization
	10.7.3 Phase 3 - Payment using token

	10.8 Deleting a tokenized card
	11 Error codes
	12 Testing environment information
	12.1   Testing 3DS 2.x
	13 How to move to Production environment
	14 Merchant-side PCI data security information

